首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sorption of selenate on soils and pure phases: kinetic parameters and stabilisation
Authors:Loffredo N  Mounier S  Thiry Y  Coppin F
Institution:a Institut de Radioprotection et Sûreté Nucléaire (IRSN), DEI/SECRE/Laboratoire de Radioécologie et d’Ecotoxicologie, Cadarache, Bât 186, BP3, 13115 Saint-Paul-lez-Durance Cedex, France
b Laboratoire PROTEE, Université du Sud Toulon-Var, BP 20132, La Garde 83957, France
c Agence Nationale pour la gestion des Déchets Radioactifs (Andra), Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex, France
Abstract:This study was conducted to identify the principle selenate carrier phases for two selected soils, by comparing their reactivity with selenate to that of pure phases of the solids. Silica, calcium carbonate, aluminium hydroxide, goethite, bentonite and humic acid were selected as the main soil carrier phases. Comparisons were made first on the parameter values obtained with the best fit of a kinetic sorption model which can discriminate instantaneous sorption from kinetically limited sorption. Then comparisons were made of the ability for each solid to stabilise selenate by measuring the ratio of the partition coefficient for sorption (Kdsorption) over that of the desorption (Kddesorption). Kinetics and stabilisation were used to help elucidate the nature of interactions with the test solid phases for a large range of selenate concentrations. The experiments were conducted over 165 h in batch reactors, the solid being isolated from the solution by dialysis tubing, at two pH (5.4 and 8) and three selenate concentrations (1 × 10−3, 1 × 10−6 and 1 × 10−8 mol L−1). The results obtained showed that only aluminium hydroxide can sorb selenate throughout the studied pH range (pH 5.4 to 8.0). The sorption capacity on this mineral was high (Kdsorption > 100 to 1 × 104 L kg−1) and the selenate was mainly stabilized by the formation of inner sphere complexes. The sorption on goethite occurred at pH 5.4 (Kdsorption 52 L kg−1), mainly as outer sphere complexes, and was null at pH 8. On silica, a weak sorption was observed only at pH 5.4 and at 165 h (Kdsorption 4 L kg−1). On bentonite, calcium carbonate and humic acid no significant sorption was observed. Concerning the two soils studied, different behaviours were observed for selenate. For soil Ro (pH 5.4), Kdsorption was low (8 L kg−1) compared to soil Bu (pH 8) (70 L kg−1). The sorption behaviour of selenate on soil Ro was mainly due to outer sphere complexes, as for goethite, whereas for soil Bu the sorption was mainly attributed to inner sphere complexes followed by reduction mechanisms, probably initiated by microorganisms, in which no steady state was reached at the end of the 165 h experiments. The sorption of selenate decreased when concentrations reached 1 × 10−3 mol L−1, due to solid saturation, except for aluminium hydroxide. Reduction of selenate seemed also to occur on goethite and soil Ro, for the same concentration, but without preventing a decrease in sorption. Thus, this work shows that the comparison of selenate behaviour between soil and pure phases helps to elucidate the main carrier phases and sorption mechanisms in soil.
Keywords:Sorption  Selenate  Minerals  Soil  Modelling
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号