首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical simulation of flame acceleration and deflagration-to-detonation transition of ethylene in channels
Institution:1. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, PR China;2. Department of Aerospace Engineering, University of Maryland, College Park, MD 20742, USA;1. Shanghai Jiaotong University, School of Aeronautics and Astronautics, Shanghai 200240, China;2. East China University of Science and Technology, Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, Shanghai 200237, China
Abstract:Ethylene (C2H4) is a hydrocarbon fuel and widely used in chemical industry, however, ethylene is highly flammable and therefore presents a serious fire and explosion hazard. This work is initiated by addressing the hazard assessment of ethylene mixtures in different scale channels (d = 5 mm, 10 mm and 20 mm) from the aspect of flame acceleration (FA) and deflagration-to-detonation transition (DDT) by using large eddy simulation (LES) method coupled with the artificially thickened flame (ATF) approach. The fifth order local characteristics based weighted essentially non-oscillatory (WENO) conservative finite difference scheme is employed to solve the governing equations. The numerical results confirm that flame velocity increase rapidly at the beginning stage in three channels, and the flame acceleration rate is slower in the subsequent stage, afterwards, the flame velocity has an abrupt increase, and the onset of detonation occurs. Due to the fact that wall effect is significant in the narrow channel (e.g.,5 mm), especially in the ignition stage of the flame, flames have different shapes in wider channels (10 mm and 20 mm) and narrow channel (5 mm). Both the pressure and temperature profiles confirm DDT run-up distances are 0.251 m, 0.203 m and 0.161 m in 20 mm, 10 mm and 5 mm channels, respectively, which indicates that a shorter run-up distance is required in narrower channel. The cellular detonation structures for the ethylene-air mixture in different channels indicate that multi-headed detonation structures can be found in 20 mm channel, as the channel width decreases to 10 mm, detonation has a single-headed spinning structure, as the width is further reduced to 5 mm, only large longitudinal oscillation of the pressure can be observed.
Keywords:Ethylene  Large eddy simulation  WENO  Flame acceleration  DDT
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号