首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Determination of trace perchlorate in water: a simplified method for the identification of potential interferences
Authors:Maike A Seiler  Detlef Jensen  Udo Neist  Ursula K Deister  Franz Schmitz
Institution:1.Hessian State Laboratory,Wiesbaden,Germany;2.Thermo Fisher Scientific,Dreieich,Germany;3.Hochschule RheinMain,Rüsselsheim,Germany;4.Hessian State Laboratory,Wiesbaden,Germany
Abstract:

Background

Perchlorate contamination of water and food poses potential health risks to humans due to the possible interference of perchlorate with the iodide uptake into the thyroid gland. Perchlorate has been found in food and drinking, surface, or swimming pool waters in many countries, including the United States, Canada, France, Germany, and Switzerland, with ion chromatography (IC) being the preferred analytical method. The standardization of a robust ion chromatographic method is therefore of the high interest for public health and safety. This article summarizes the experiments and results obtained from analyzing untreated samples, considering the sample’s electrical conductance as guidance for direct sample injection as described in EPA 314.0.

Results

The suitability of ion chromatography with suppressed conductivity detection was tested for water samples in order to check the influence of matrix effects on the perchlorate signal of untreated samples. A sample injection volume of 750 μL was applied to the selected 2 mm?IC?column. The IC?determination of perchlorate at low µg/L levels is challenged by the presence of high loads of matrix ions (e.g., chloride, nitrate, carbonate, and sulfate at 100 mg/L and above). Perchlorate recovery is impaired with the increasing matrix ion concentrations, and its chromatographic peak is asymmetric particularly at low perchlorate concentrations. The identification of the individual maximum concentration of interfering anions like chloride, nitrate, and sulfate that influence perchlorate recovery helps to reduce the number of sample preparation steps or an obligatory measurement of the electrical conductivity of the sample. Within the scope of this study, samples containing less than 125 mg/L of either anion did not need sample preparation.

Conclusion

The identification of the maximum concentration of interfering anions like chloride, nitrate, and sulfate influencing perchlorate recovery provides a simplified alternative to the EPA 314.0 method. This approach reduces unnecessary sample preparation steps while allowing a reliable prognosis of possible interferences and maintaining result quality. This study was performed to support the development of a respective international standard, which is being established by the International Organization for Standardization (ISO). The results of the study are also intended to be used as guidance for interested laboratories to optimize the analytical workflow for trace perchlorate determination.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号