首页 | 本学科首页   官方微博 | 高级检索  
     


Development of a microscale emission factor model for particulate matter for predicting real-time motor vehicle emissions
Authors:Singh Rakesh B  Huber Alan H  Braddock James N
Affiliation:National Research Council Research Associate, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
Abstract:The U.S. Environmental Protection Agency's National Exposure Research Laboratory is pursuing a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project goal is to develop improved methods for modeling the source through the air pathway to human exposure in significant exposure microenvironments. Current particulate matter (PM) emission models, particle emission factor model (used in the United States, except California) and motor vehicle emission factor model (used in California only), are suitable only for county-scale modeling and emission inventories. There is a need to develop a site-specific real-time emission factor model for PM emissions to support human exposure studies near roadways. A microscale emission factor model for predicting site-specific real-time motor vehicle PM (MicroFacPM) emissions for total suspended PM, PM less than 10 microm aerodynamic diameter, and PM less than 2.5 microm aerodynamic diameter has been developed. The algorithm used to calculate emission factors in MicroFacPM is disaggregated, and emission factors are calculated from a real-time fleet, rather than from a fleet-wide average estimated by a vehicle-miles-traveled weighting of the emission factors for different vehicle classes. MicroFacPM requires input information necessary to characterize the site-specific real-time fleet being modeled. Other variables required include average vehicle speed, time and day of the year, ambient temperature, and relative humidity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号