首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sodium-dependent amino acid transport in the chlorophyte Platymonas subcordiformis
Authors:M Qafaiti  G C Stephens
Institution:(1) Department of Developmental and Cell Biology, University of California at Irvine, 92717 Irvine, California, USA
Abstract:Sodium-dependent transport of alanine and serine by Platymonas subcordiformis was demonstrated by evaluating the kinetics of entry of these substrates over a range of concentrations of ambient sodium. The reciprocal of the concentration at which entry rate was half maximal (K t ) was linearly related to ambient sodium concentration; maximum entry (V max) was not affected. Entry of labeled amino acids as measured by determining radioactivity in the medium was close to but slightly less than rates of net entry as determined by high-performance liquid chromatography. This difference presumably reflects extrusion of labeled carbon by the cells in a form not detectable by the chromatographic techniques employed. The coupling coefficient (sodium ions per amino acid molecule) for entry of alanine and serine was evaluated and determined to be 2. Methylaminoisobutyric acid was not taken up by P. subcordiformis and had no inhibitory effect on uptake of alanine or serine. B-2-aminobicycloheptane-2-carboxylic acid competitively inhibited uptake of both substrates. The internal sodium concentration of P. subcordiformis was measured, and the maximum gradient energetically favorable for amino acid transport was calculated from data in the present work and drawn from the literature. Assuming that uptake of amino acids is strictly sodium-dependent, an amino acid concentration gradient of the order of 106 (cell:medium) can be achieved. This concentration differential permits net uptake of amino acids by P. subcordiformis from ambient amino acid levels in the nanomolar range.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号