首页 | 本学科首页   官方微博 | 高级检索  
     检索      

鸡粪模拟堆肥中多重耐药菌、耐药基因和整合酶基因的消减动力学解析
引用本文:姜欣然,李涛,孙兴滨,唐伟欣,王旭明,高浩泽,仇天雷.鸡粪模拟堆肥中多重耐药菌、耐药基因和整合酶基因的消减动力学解析[J].环境科学研究,2022,35(4):1045-1055.
作者姓名:姜欣然  李涛  孙兴滨  唐伟欣  王旭明  高浩泽  仇天雷
作者单位:1.东北林业大学林学院,黑龙江 哈尔滨 150040
基金项目:现代农业产业技术体系北京市创新团队专项(No.BAIC04-2021);
摘    要:为掌握多重耐药菌、耐药基因和整合酶基因在鸡粪堆肥过程中的消减动力学规律,试验外源添加多重耐药菌,并以其携带的磺胺类耐药基因(sul2)、多肽类耐药基因(mcr-1)、喹诺酮类基因(oqxB)和Ⅰ类整合酶基因(intI1)作为典型污染物,开展模拟堆肥试验. 结果表明:可培养的多重耐药大肠杆菌数量在3 d的高温后得到完全灭活;堆肥10 d后,多重耐药菌总量下降了4~6个数量级. 在高温堆肥过程中耐药基因的绝对丰度随着堆肥过程的进行而逐渐降低,耐药基因aadA、sul2、mcr-1、oqxB的消减率分别为89.39%、97.99%、99.89%、99.81%,intI1基因的消减率高于80%;大多数耐药基因的相对丰度表现出先降低后略微升高的趋势. 基于基因绝对丰度的非线性回归分析表明,“独立”耐药基因(oqxB、mcr-1)的消减速率明显高于与Ⅰ类整合酶基因相连的基因(aadA),多重耐药大肠杆菌16S rRNA基因消减速率为0.128 d?1,半消减期为5.41 d. 堆肥对耐药基因绝对丰度的消减速率高于相对丰度. 研究显示,堆肥可以有效消减鸡粪中多重耐药菌,耐药基因消减规律符合一级动力学方程,与Ⅰ类整合酶基因相连耐药基因消减速率慢于“独立”耐药基因,4种耐药基因的半消减期为1.69~5.81 d. 

关 键 词:多重耐药菌    耐药基因    Ⅰ类整合酶基因    消减速率    堆肥
收稿时间:2021-09-26

Dissipation Kinetics of Multidrug-Resistant Bacteria,Antibiotic Resistance Genes and Integrase Genes during Simulated Composting of Chicken Manure
JIANG Xinran,LI Tao,SUN Xingbin,TANG Weixin,WANG Xuming,GAO Haoze,QIU Tianlei.Dissipation Kinetics of Multidrug-Resistant Bacteria,Antibiotic Resistance Genes and Integrase Genes during Simulated Composting of Chicken Manure[J].Research of Environmental Sciences,2022,35(4):1045-1055.
Authors:JIANG Xinran  LI Tao  SUN Xingbin  TANG Weixin  WANG Xuming  GAO Haoze  QIU Tianlei
Institution:1.College of Forestry, Northeast Forestry University, Harbin 150040, China2.Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
Abstract:In order to evaluate the removal kinetics of multidrug-resistant bacteria, antibiotic resistance genes (ARGs) and integrase genes during composting, a laboratory-scale stimulated composting was conducted. Multidrug-resistant bacteria (E. coli 5A5) carrying several typical ARGs, specifically, sulfonamide resistance gene sul2, peptide resistance gene mcr-1, fluoroquinolone resistance gene oqxB, and class Ⅰ integron-integrase gene intI1, were added as exogenous ARGs during composting. The results showed that the cultivable multi-drug resistant E. coli was completely inactivated after 3 days of compositing at high temperature. After 10 days of composting, the total number of multi-drug resistant bacteria decreased by 4-6 lg (CFU/g). During composting, the absolute abundance of ARGs gradually decreased. The removal efficiency of aadA, sul2, mcr-1 and oqxB were 89.39%, 97.99%, 99.89% and 99.81%, respectively, and the removal efficiency of intI1 gene was higher than 80%. The relative abundance of most ARGs showed a trend of decreasing first and then increasing slightly. The non-linear regression analysis of the absolute abundance of ARGs showed that the dissipation rate of ARGs not related to integrase (oqxB, mcr-1) was significantly higher than that of ARGs related to integrase (aadA). The 16S rRNA gene dissipation rate of multidrug resistant E. coli was 0.128 d?1, and the elimination half-life was 5.41 d. The removal rate of the absolute abundance of ARGs was higher than that of the relative abundance of ARGs. The results indicate that composting can effectively reduce the multidrug-resistant bacteria in chicken manure. The dissipation of ARGs follows the first-order kinetic equation. The removal rate of integron-carried ARGs is slower than that of ARGs without integrons. The elimination half-life of the four ARGs were 1.69-5.81 d during composting. 
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《环境科学研究》浏览原始摘要信息
点击此处可从《环境科学研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号