摘 要: | 为建立高效的纳米金属氧化物细胞生物毒性构效关系预测模型,研究了20种纳米金属氧化物在不同生物条件下对人正常肺上皮细胞(BEAS-2B)和角质层细胞(HaCaT)的毒性效应构效关系,并首次将元素周期描述符(定量描述符)与试验条件参数(定性描述符)相结合,共同表征金属氧化物的纳米结构特征。在采用支持向量机-特征递归消除法(Support Vector Machine-Recursive Feature Elimination, SVM-RFE)筛选的最优描述符作为输入参数的基础上,分别应用支持向量机(Support Vector Machine, SVM)和随机森林(Random Forest, RF)2种高效的建模方法,建立纳米材料构效关系(Structure-Activity Relationships for Nanoparticals, Nano-SAR)预测模型。2个算法训练集的准确率(ACC)均大于0.9,内部验证准确率均大于0.7,测试集外部验证的准确率也均大于0.8,模型验证结果表明2个算法均具有良好的稳定性和较强的预测能力。对比2个算法研究结果表明,RF算法优于SVM算法...
|