首页 | 本学科首页   官方微博 | 高级检索  
     

青藏高原生态资产地域划分中的SOFM网络技术
引用本文:李双成,郑度,张镱锂. 青藏高原生态资产地域划分中的SOFM网络技术[J]. 自然资源学报, 2002, 17(6): 750-756. DOI: 10.11849/zrzyxb.2002.06.014
作者姓名:李双成  郑度  张镱锂
作者单位:1. 北京大学城市与环境学系,北京100871;2. 中国科学院地理科学与资源研究所 土地科学中心,地表过程分析与模拟教育部重点实验室,北京100101
基金项目:国家重点基础研究发展规划(G1998040816)经费资助。
摘    要:
针对目前地域划分中存在的问题,论文尝试以人工神经网络技术作为区划工作的理论支撑,构建了自组织特征映射SOFM网络,以青藏高原环境与生态系统资产作为待分客体,探索了新技术和方法在生态资产地域划分中的应用。结果表明,对于自然界中广泛存在的非线性问题,SOFM网络具有比聚类分析等线性分类器更强的适应性。应用SOFM网络在对待分客体生态资产进行类型划分的基础上,使用策略性循环尺度转换(SCS)范式对其进行了区域转换,最终完成了青藏高原范围内生态资产的地域划分。

关 键 词:地域划分  人工神经网络  SOFM网络  SCS范式  青藏高原
文章编号:1000-3037(2002)06-0750-07
收稿时间:2002-04-26
修稿时间:2002-04-26

Application of SOFM neural network to ecological assets regionalization in Qinghai-Tibet Plateau
LI Shuang-cheng,ZHENG Du,ZHANG Yi-li. Application of SOFM neural network to ecological assets regionalization in Qinghai-Tibet Plateau[J]. Journal of Natural Resources, 2002, 17(6): 750-756. DOI: 10.11849/zrzyxb.2002.06.014
Authors:LI Shuang-cheng  ZHENG Du  ZHANG Yi-li
Affiliation:1. Department of Urban and Environmental Sciences,Peking University,The Center for Land Studies,Lab for Earth Surface Processes,Beijing100871,China;2. Institute of Geographic Sciences and Natural Resources Research,CAS,Beijing100101,China
Abstract:
Artificial neural networks(ANNs)whose elements are inspired by biological nervous systems are composed of simple elements operating in parallel.Commonly neural networks are adjusted,or trained,so that a particular input leads to a specific target output.Neural networks have been trained to perform complex functions in various fields of application including predic-tion,pattern recognition,system identification,classification and optimization.Conventional statistical models fail to deal with non-linear relations among the physical factors.However,as an alternative approach,ANNs can map complex temporal and spatial pat-terns by using non-linear transfer functions.In this paper,regionalization of ecological assets is conducted by unsupervised artificial neural network,namely Self-Organizing Feature Mapping(SOFM).The field data employed as input for training represent spatial ecological features such as longitude,latitude,annual mean temperature,annual mean precipitation,aridity,biological tempera ture,assets demand index,assets scarcity,NPP of unit area and ecological value of unit area collected at84sites on Qinghai-Tibet Plateau.After the iterative learning phase in the SOFM analysis,each of the84sites is associated with an output unit.Each output unit contains some of the sites and there is obvious discrete grouping of cases.The SOFM,therefore,appears to have organized the sites such that the various output units are associated with different eco-logical assets classes.In order to assess the performance of SOFM,the comparison with cluster analysis is carried out.The result indicates that the overall performance of the neural network algorithm was better than that of cluster analysis for ecological regionalization.Finally,using SCS paradigm,conver-sion from SOFM classification to ecological assets regionalization is conducted.ternsbyusingnon linearconductedbyunsupervisedSOFM.Thefielddata
Keywords:regionalization  artificial neural network  SOFM model  SCS paradigm  Qinghai-Ti-bet Plateau
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《自然资源学报》浏览原始摘要信息
点击此处可从《自然资源学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号