首页 | 本学科首页   官方微博 | 高级检索  
     检索      

松花江上游夹皮沟金矿开采区芦苇叶片汞分布特征
引用本文:张曼胤,李梦洁,崔丽娟,王贺年,郭子良,徐卫刚,魏圆云,杨思,肖红叶.松花江上游夹皮沟金矿开采区芦苇叶片汞分布特征[J].环境科学,2018,39(1):415-421.
作者姓名:张曼胤  李梦洁  崔丽娟  王贺年  郭子良  徐卫刚  魏圆云  杨思  肖红叶
作者单位:中国林业科学研究院湿地研究所, 北京 100091;湿地生态功能与恢复北京市重点实验室, 北京 100091;河北衡水湖湿地生态系统国家定位观测研究站, 衡水 053000,中国林业科学研究院湿地研究所, 北京 100091;湿地生态功能与恢复北京市重点实验室, 北京 100091;河北衡水湖湿地生态系统国家定位观测研究站, 衡水 053000,中国林业科学研究院湿地研究所, 北京 100091;湿地生态功能与恢复北京市重点实验室, 北京 100091;北京汉石桥湿地生态系统国家定位观测研究站, 北京 101399,中国林业科学研究院湿地研究所, 北京 100091;湿地生态功能与恢复北京市重点实验室, 北京 100091;河北衡水湖湿地生态系统国家定位观测研究站, 衡水 053000,中国林业科学研究院湿地研究所, 北京 100091;湿地生态功能与恢复北京市重点实验室, 北京 100091;河北衡水湖湿地生态系统国家定位观测研究站, 衡水 053000,中国林业科学研究院湿地研究所, 北京 100091;湿地生态功能与恢复北京市重点实验室, 北京 100091;河北衡水湖湿地生态系统国家定位观测研究站, 衡水 053000,中国林业科学研究院湿地研究所, 北京 100091;湿地生态功能与恢复北京市重点实验室, 北京 100091;河北衡水湖湿地生态系统国家定位观测研究站, 衡水 053000,中国林业科学研究院湿地研究所, 北京 100091;湿地生态功能与恢复北京市重点实验室, 北京 100091;河北衡水湖湿地生态系统国家定位观测研究站, 衡水 053000,中国林业科学研究院湿地研究所, 北京 100091;湿地生态功能与恢复北京市重点实验室, 北京 100091;河北衡水湖湿地生态系统国家定位观测研究站, 衡水 053000
基金项目:中央级公益性科研院所基本科研业务费专项(CAFINT2014K05)
摘    要:为研究金矿开采区周围芦苇(Phragmites australis)叶片汞含量的分布特征、影响因素及其与其它环境要素的相关性,2016年6月(夏季)和9月(秋季)在位于松花江上游的夹皮沟金矿开采区内采集芦苇叶片、土壤、水体样本测定汞含量,同步测定大气汞浓度,并通过单因子污染指数法确定芦苇叶片汞污染等级,分析芦苇叶片汞含量与环境要素汞含量的相关关系.结果表明,在空间分布上,芦苇叶片汞含量以及土壤、水体汞含量均随离夹皮沟金矿距离的加大而逐渐衰减,大气汞浓度空间分布特征不明显;在时间分布上,芦苇叶片汞重污染地区夏季汞含量低于秋季,芦苇叶片汞轻污染地区夏季汞含量略高于秋季,而大气汞、土壤汞含量均为夏季高于秋季;各环境要素对芦苇叶片汞含量的影响重要程度依次为:土壤大气水体;此外,停止混汞法采金多年后,夹皮沟金矿开采区汞源主要为土壤.

关 键 词:松花江  汞污染  芦苇叶片  环境要素  特征
收稿时间:2017/6/26 0:00:00
修稿时间:2017/8/10 0:00:00

Distribution Characteristics of Mercury in Reed Leaves from the Jiapigou Gold Mine in the Songhua River Upstream
ZHANG Man-yin,LI Meng-jie,CUI Li-juan,WANG He-nian,GUO Zi-liang,XU Wei-gang,WEI Yuan-yun,YANG Si and XIAO Hong-ye.Distribution Characteristics of Mercury in Reed Leaves from the Jiapigou Gold Mine in the Songhua River Upstream[J].Chinese Journal of Environmental Science,2018,39(1):415-421.
Authors:ZHANG Man-yin  LI Meng-jie  CUI Li-juan  WANG He-nian  GUO Zi-liang  XU Wei-gang  WEI Yuan-yun  YANG Si and XIAO Hong-ye
Institution:Institute of Wetland Research, Chinese Academy of Froestry, Beijing 100091, China;Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China;Heibei Hengshuihu National Wetland Ecosystem Research Station, Hengshui 053000, China,Institute of Wetland Research, Chinese Academy of Froestry, Beijing 100091, China;Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China;Heibei Hengshuihu National Wetland Ecosystem Research Station, Hengshui 053000, China,Institute of Wetland Research, Chinese Academy of Froestry, Beijing 100091, China;Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China;Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China,Institute of Wetland Research, Chinese Academy of Froestry, Beijing 100091, China;Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China;Heibei Hengshuihu National Wetland Ecosystem Research Station, Hengshui 053000, China,Institute of Wetland Research, Chinese Academy of Froestry, Beijing 100091, China;Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China;Heibei Hengshuihu National Wetland Ecosystem Research Station, Hengshui 053000, China,Institute of Wetland Research, Chinese Academy of Froestry, Beijing 100091, China;Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China;Heibei Hengshuihu National Wetland Ecosystem Research Station, Hengshui 053000, China,Institute of Wetland Research, Chinese Academy of Froestry, Beijing 100091, China;Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China;Heibei Hengshuihu National Wetland Ecosystem Research Station, Hengshui 053000, China,Institute of Wetland Research, Chinese Academy of Froestry, Beijing 100091, China;Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China;Heibei Hengshuihu National Wetland Ecosystem Research Station, Hengshui 053000, China and Institute of Wetland Research, Chinese Academy of Froestry, Beijing 100091, China;Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China;Heibei Hengshuihu National Wetland Ecosystem Research Station, Hengshui 053000, China
Abstract:At the Jiapigou gold mine of the Songhua River upstream, reed leaves (Phragmites australis), soil, and water samples were collected from June (summer) and September (autumn) 2016 for the determination of mercury. Moreover, the mercury concentrations in the air were determined synchronously. Furthermore, the level of mercury pollution in the reed leaves was determined by a single factor pollution index method, and the relationships among mercury concentrations in the reed leaves and environmental factors were analyzed to research the distribution characteristics, influencing factors, and correlations around the gold mining area. The results show that, in terms of spatial distribution, the mercury concentrations in reed leaves, soil, and water gradually decay with the distance from the gold mining area, and the spatial distribution of the mercury concentrations in the air was not obvious. Regarding a temporal distribution, the mercury concentrations in the reed leaves in summer were lower than those in autumn in the heavy pollution areas, while the distribution in the light pollution areas was the opposite, as the mercury concentrations of air and soil in summer were higher than those in autumn. The influence of environmental factors on the mercury concentrations in the reed leaves was soil > air > water. In addition, after stopping gold mining and processing using mercury, the mercury source in the area was the soil.
Keywords:Songhua River  mercury pollution  reed leaves  environmental factors  characteristics
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号