首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Improving flammable mass estimation for vapor cloud explosion modeling in an offshore QRA
Authors:B Das  M Weinberg
Institution:a Corporate Technology, American Bureau of Shipping (ABS), 16800 Greenspoint Park Dr, Houston, Texas 77060, USA
b ABS Consulting, 14607 San Pedro Ave, San Antonio, Texas 78232, USA
Abstract:Presence of congestion and confinement in offshore modules due to limited availability of space make Vapor Cloud Explosions (VCEs) a significant contributor to risk. There are several methods available for quantifying the blast overpressure generated over distances and time. The approaches range from one-dimensional analysis using correlation models to 3-D analysis using Computational Fluid Dynamics (CFDs). The correlation models are easy to use and well-suited for assessing a number of credible VCE scenarios. However, the overpressure results predicted by correlation models depend on a good estimate of flammable mass. This paper proposes a method to improve the estimation of flammable mass. The UKOOA Ignition model developed by the Energy Institute London is used to estimate the flammable mass; and is modified to account for the effect of mitigation measures on release rate. A directional probability for wind is also added to the model. The proposed model takes into consideration the platform geometry and offshore conditions for each scenario, release location and direction, and wind direction. An offshore production platform with three deck levels is presented as an example case. The flammable mass is also computed using CFD and the results are compared to that of the proposed and the conventional methods. The results show that the flammable masses for selected scenarios are better estimated by the proposed method, being much lower than estimated by the conventional method, though larger than the CFD results. This paper presents an interim result of a project undertaken to improve QRA studies for VCE events.
Keywords:Release rate  Dispersion  Flammable mass
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号