首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Long-term experiments on lifespan, reproductive activity and timing of reproduction in the Arctic copepod Calanus hyperboreus
Authors:Hans-Juergen Hirche
Institution:1. Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Alten Hafen, Bremerhaven, 27568, Germany
Abstract:Several experiments were conducted with starved and fed females of the Arctic copepod Calanus hyperboreus (1) to investigate their lifespan, reproductive period, egg production and egg viability; (2) to study the effect of origin, i.e., Atlantic and Arctic Waters in the Greenland Sea, on the timing of reproduction; and (3) to study the effect of time of collection on the onset of reproductive activity as a first approach to study control mechanisms of the reproductive cycle. Females collected in October produced up to 1,000 eggs and had a maximum lifespan of 164 days without feeding, whereas fed females produced up to ca. 6,000 eggs and survived up to 806 days. These observations support earlier assumptions that females were multiannual-iteroparous, i.e., capable to spawn in successive years, which would be unique for calanoid copepods. In starved females, clutch size decreased significantly with each spawning event. Viable eggs were produced during most of the life time. There was no difference in the timing of reproductive activity between females from the West Spitsbergen Current and the Greenland Sea Gyre. Fed and starved females collected in May and June began to spawn circa 2 and 4 months after collection, respectively, whereas females collected in August and October started spawning at the same time, in the middle of October. This indicates initiation of reproductive activity in the field in August, coincident with the descent into deep waters. Potential cues for the untimely spawning of females collected in spring and ‘unnatural’ feeding in fall experiments are discussed. Their large size, robustness and combination of different types of diapause in their life cycle make C. hyperboreus a good model organism to study diapause control mechanisms.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号