Abstract: | Stable isotope analysis of15N/14N and18O/16O - nitrate was used to investigate the nitrate dynamics and potential groundwater pollution in an Alpine forest stand in Tyrol/Austria. The dynamics of δ15−Nnitrate values were followed in a forest ecosystem. The stable isotopic values of the throughfall are comparable with other studies. The completely decoupled dynamics of the δ15−Nnitrate of the precipitation and the surface water was observed. High variations in δ15-N - nitrate values in rainfall indicate that nitrate of different sources is deposited at that site. A significant correlation between the δ15Nnitrate values of the surface water and soil water was obtained, while no significant correlation between the δ15Nnitrate values of any precipitation sample with the surface water could be found. This suggests that the main source of nitrate in soil water originates from microbiological activity such as nitrification reactions and less from nitrate input by deposition. The results of δ18Onitrate measurements strongly supported the microbiological origin of nitrate in the surface and soil water. In an additional lysimeter experiment,15N - labelled nitrate was applied to study nitrate transport in soil. After 130 days and the collection of 300 L leachate, a total of 52% of the applied nitrate was detected in seepage water. |