首页 | 本学科首页   官方微博 | 高级检索  
     


NONLINEAR MODELING AND PREDICTION OF A RIVER FLOW SYSTEM1
Authors:M. H. N. Tabrizi  S. E. Said  A. W. Badr  Y Mashor  S. A. Billings
Abstract:ABSTRACT: Model estimation and prediction of a river flow system are investigated using nonlinear system identification techniques. We demonstrate how the dynamics of the system, rainfall, and river flow can be modeled using NARMAX (Nonlinear Autoregressive Moving Average with eXogenuous input) models. The parameters of the model are estimated using an orthogonal least squares algorithm with intelligent structure detection. The identification of the nonlinear model is described to represent the relationship between local rainfall and river flow at Enoree station (inputs) and river flow at Whitmire (output) for a river flow system in South Carolina.
Keywords:river flow  modeling/statistics  time series analysis  water management  model parameter identification  nonlinear time-series models  NARMAX
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号