首页 | 本学科首页   官方微博 | 高级检索  
     检索      


APPLICATION OF AN INTEGRATED BASIN-SCALE HYDROLOGIC MODEL TO SIMULATE SURFACE-WATER AND GROUND-WATER INTERACTIONS1
Authors:Zhongbo Yu  Franklin W Schwartz
Abstract:ABSTRACT: Hydrologic models have become an indispensable tool for studying processes and water management in watersheds. A physically-based, distributed-parameter model, Basin-Scale Hydro-logic Model (BSIIM), has been developed to simulate the hydrologic response of large drainage basins. The model formulation is based on equations describing water movement both on the surface and in the subsurface. The model incorporates detailed information on climate, digital elevation, and soil moisture budget, as well as surface-water and ground-water systems. This model has been applied to the Big Darby Creek Watershed, Ohio in a 28-year simulation of rainfall-runoff processes. Unknown coefficients for controlling runoff, storativity, hydraulic conductivity, and streambed permeability are determined by a trial-and-error calibration. The performance of model calibration and predictive capability of the model was evaluated based on the correlation between simulated and observed daily stream discharges. Discrepancies between observed and simulated results exist because of limited precipitation data and simplifying assumptions related to soil, land use, and geology.
Keywords:watershed  baseflow  streamflow  hydrograph  finite difference  routing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号