Abstract: | Bayesian Processor of Forecasts (BPF) combines a prior distribution, which describes the natural uncertainty about the realization of a hydrologic process, with a likelihood function, which describes the uncertainty in categorical forecasts of that process, and outputs a posterior distribution of the process, conditional upon the forecasts. The posterior distribution provides a means of incorporating uncertain forecasts into optimal decision models. We present fundamentals of building BPF for time series. They include a general formulation, stochastic independence assumptions and their interpretation, computationally tractable models for forecasts of an independent process and a first-order Markov process, and parametric representations for normal-linear processes. An example is shown of an application to the annual time series of seasonal snowmelt runoff volume forecasts. |