首页 | 本学科首页   官方微博 | 高级检索  
     


Short-term wind speed forecasting based on random forest model combining ensemble empirical mode decomposition and improved harmony search algorithm
Authors:Mingxing Yu
Affiliation:1. Department of Information Engineering, Chaoyang Teachers College, Chaoyang, Chinabeihesa@hotmail.com"ORCIDhttps://orcid.org/0000-0001-8100-8431
Abstract:ABSTRACT

Wind speed forecasting plays an important role in power grid dispatching management. This article proposes a short-term wind speed forecasting method based on random forest model combining ensemble empirical modal decomposition and improved harmony search algorithm. First, the initial wind speed data set is decomposed into several ensemble empirical mode functions by EEMD, then feature extraction of each sub-modal IMF is performed using fast Fourier transform to solve the cycle of each sub-modal IMF. Next, combining the high-performance parameter optimization ability of the improved harmony search algorithm, two optimal parameters of random forest model, number of decision trees, and number of split features are determined. Finally, the random forest model is used to forecast the processing results of each submodal IMF. The proposed model is applied to the simulation analysis of historical wind data of Chaoyang District, Liaoning Province from April 27, 2015 to May 22, 2015. To illustrate the suitability and superiority of the EEMD-RF-IHS model, three types of models are used for comparison: single models including ANN, SVM, RF; EMD combination models including EMD-ANN, EMD-SVM, EMD-RF; EEMD combination models including EEMD-ANN, EEMD-SVM, EEMD-RF. The analysis results of evaluation indicators show that the proposed model can effectively forecast short-term wind data with high stability and precision, providing a reference for forecasting application in other industry fields.
Keywords:Ensemble empirical mode decomposition  ensemble empirical mode function  improved harmony search  random forest  short-term wind forecasting  parameter optimization  combination forecasting model
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号