CHLOROPHYLL,PHOSPHORUS, SECCHI DISK,AND TROPHIC STATE1 |
| |
Authors: | Victor W. Lambou Stephen C. Hern William D. Taylor Llewellyn R. Williams |
| |
Abstract: | ![]() ABSTRACT: The relationship between chlorophyll u, total phosphorus, secchi disk depth, and trophic state were examined using data on U.S. lakes collected by U.S. EPA's National Eutrophication Survey. By comparing predicted secchi disk depths with observed summer secchi disk depths in 757 lakes, it was determined that in many lakes non-chlorophyll related light attenuation is important in controlling the amount of chlorophyll u produced per unit of total phosphorus. Ranking of 44 lakes by 18 different trophic state measurements and single and multivariable indices were compared with rankings provided by mean summer ambient total phosphorus and chlorophyll u. The trophic state measurements and indices were much more successful in ranking the lakes against total phosphorus than chlorophyll u, indicating that there are differences in the relative trophic rankings of many of the lakes depending upon whether primary nutrients or biological manifestations are used as the ranking mechanism. If the manifestations of nutrients rather than their absolute levels are the primary criteria for beneficial use of lakes, the use of many of the commonly employed trophic state measurements, which assume or imply that there is a constant relationship between total phosphorus or secchi disk and chlorophyll, can lead to erroneous conclusions and unnecessary costly management controls. Secchi disk measurements may be more useful as a predictor of ambient lake total phosphorus concentrations than of chlorophyll. |
| |
Keywords: | chlorophyll phosphorus secchi disk trophic state nutrients water quality light attenuation. |
|
|