首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Whole-plant growth and leaf formation in ozonated hybrid poplar (Populus x euramericana)
Authors:Matyssek R  Günthardt-Goerg M S  Landolt W  Keller T
Institution:Swiss Federal Institute for Forest, Snow, and Landscape Research, Zürcherstr. 111, CH-8903 Birmensdorf ZH, Switzerland.
Abstract:Seasonal growth was studied in potted cuttings of hybrid poplar (one clone of Populus x euramericana) either exposed to ozone in filtered air (0 = control, 0.05, 0.10 microl litre(-1)) or in ambient air (mean = 0.03 microl litre(-1)). Only at 0.10 microl litre(-1) was biomass production reduced and related to leaf loss rather than leaf formation, since the latter was similar in all treatments. Stem length at 0.10 microl litre(-1) approached that of the control, whereas starch concentration in the green stem bark tended to be reduced, as were the ratios of stem weight/length and root/shoot biomass. The changes in carbon allocation and biomass production gradually became established during the second half of the growing season. At the altered carbon allocation at 0.10 microl litre(-1), the ratio of whole-plant production/attached foliage area resembled that of the other O(3) regimes. However, the latter ratio was strongly reduced at 0.10 microl litre(-1) when calculated on the basis of the potential foliage area, as compensated for the O(3)-induced leaf loss. Thus the carbon return/cost balance of the totally formed foliage was low, although the relative-growth rate of ozonated plants temporarily reached that of the control. The relation between leaf differentiation under ozonation (lowered stomatal density) and whole-plant production remains uncertain. The plant behavior found is discussed in terms of passive response or acclimatization to O(3) stress.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号