首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A 21st-Century perspective on snow drought in the Upper Colorado River Basin
Authors:Aaron J Heldmyer  Nels R Bjarke  Ben Livneh
Institution:1. Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado, USA;2. Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado, USA

Contribution: Data curation, Writing - review & editing;3. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA

Contribution: Funding acquisition, Methodology, Supervision, Writing - review & editing

Abstract:In the Upper Colorado River Basin (UCRB), there is a deep reliance on seasonal snowpack for maintenance of water resources. The term “snow drought” has recently emerged to describe periods of anomalously low snowpack. Unique seasonal patterns in precipitation and temperature that drive snow drought can have distinct hydrologic signatures, and these relationships have not been carefully studied in the UCRB. Here we examine snow drought with a new classification scheme using peak snow water equivalent (SWE) and the ratio of basin-wide modeled peak SWE to accumulated (onset to peak) precipitation (SWE/P) that clusters snow drought years into three distinct groups—“warm,” “dry,” and “warm & dry”—that minimize within-group variance. Over the period 1916–2018, we identify 14 warm years ( P ¯  = 160 mm; SWE / P ¯  = 0.24), 24 dry years ( P ¯  = 117 mm; SWE / P ¯  = 0.35), and 21 warm & dry years ( P ¯  = 94 mm; SWE / P ¯  = 0.23). An elevation-based analysis reveals two distinct patterns: warm snow droughts see severe SWE reductions primarily at lower (<2600 m) elevations (65% at lower elevations, 37% overall), whereas “dry” scenarios exhibit a consistent reduction across all elevations (39% overall). Using naturalized streamflow data, we also differentiate snow droughts by their earlier streamflow timing and decreased peakedness (warm: 7 days, 2%; dry: 7 days, 2%; warm & dry: 13 days, 5%). This research provides new insights into snow drought patterns relevant for regional water management.
Keywords:snow drought  water resources  Colorado River  drought
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号