首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of dynamic subgrid-scale models in large-eddy simulations of neutral turbulent flow over a two-dimensional sinusoidal hill
Affiliation:1. Chair for Fluid Dynamics, Institute for Combustion and Gasdynamics (IVG), University of Duisburg-Essen, Carl-Benz-Strasse 199, Duisburg 47057, Germany;2. Department of Aerospace Engineering, Bundeswehr University Munich, Werner-Heisenberg-Weg 39, Neubiberg 85577, Germany
Abstract:Large-eddy simulation (LES) is used to simulate neutral turbulent boundary-layer flow over a rough two-dimensional sinusoidal hill. Three different subgrid-scale (SGS) models are tested: (a) the standard Smagorinsky model with a wall-matching function, (b) the Lagrangian dynamic model, and (c) the recently developed scale-dependent Lagrangian dynamic model [Stoll, R., Porté-Agel, F., 2006. Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulation of neutrally stratified atmospheric boundary layers over heterogeneous terrain. Water Resources Research 42, W01409. doi:10.1029/2005WR003989]. The simulation results obtained with the different models are compared with turbulence statistics obtained from experiments conducted in the meteorological wind tunnel of the AES (Atmospheric Environment Service, Canada) [Gong, W., Taylor, P.A., Dörnbrack, A., 1996. Turbulent boundary-layer flow over fixed aerodynamically rough two-dimensional sinusoidal waves. Journal of Fluid Mechanics 312, 1–37]. We find that the scale-dependent dynamic model is able to account, without any tuning, for the local changes in the eddy-viscosity model coefficient. It can also capture the scale dependence of the coefficient associated with regions of the flow with strong mean shear and flow anisotropy. As a result, the scale-dependent dynamic model yields results that are more realistic than the ones obtained with the scale-invariant Lagrangian dynamic model.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号