首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Primary product distribution from the Cl-atom initiated atmospheric degradation of furan: Environmental implications
Institution:1. Laboratorio de Contaminación Atmosférica, Instituto de Investigación en Combustión y Contaminación Atmosférica, Universidad de Castilla-La Mancha, Camino de Moledores s/n, 13071 Ciudad Real, Spain;2. Parque Científico y Tecnológico de Albacete, Paseo de la Innovación 1, 02006 Albacete, Spain;3. Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla la Mancha, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain;1. Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju, 61186, Republic of Korea;2. School of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, United Kingdom;3. Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University, Republic of Korea;4. High Impact Weather Research Center, National Institute of Meteorological Science, Gangneung, Republic of Korea
Abstract:Furan is an aromatic hydrocarbon present in both urban and rural atmospheres, which is emitted mainly by biomass burning and the combustion of fossil fuel. Reaction of furan and Cl atoms may be important in areas where chlorine atom concentrations are potentially high such as marine and coastal regions or continental atmospheres where industrial activity emits molecular chlorine or photo-labile Cl-containing compounds. To assess the importance of this reaction and to investigate whether any unique chlorine-containing product is formed the products of the reaction of Cl atoms with furan have been determined under atmospheric conditions. For the study two different sampling/detection methods have been used: (1) Solid-Phase MicroExtraction, with subsequent analysis by thermal desorption, and gas chromatography with mass spectrometry or flame ionization detection (SPME/GC-MS/FID), and 2-“in situ” with long path fourier transform infrared spectroscopy (FTIR). The yields of primary reaction products in the absence of NO were: 5-chloro-2(5H)-furanone (64.5±10.7)%, E-butenedial (11±3)%, 5-hydroxy-2(5H)-furanone (?2.4%) and Z-butenedial (1.6±0.5)%. Other products generated by secondary reactions were 2(3H)-furanone (2.8±1.9)%, HCl (21.1±3%) and CO. Maleic anhydride was detected with a yield of about 2%, however, this yield may be a combination of both primary and secondary reactions. All errors are ±2σ. The observed products confirm that addition of Cl atoms to the double bond of furan is the dominant reaction pathway.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号