首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Parametric sensitivity analysis for thermal runaway in semi-batch reactors: Application to cyclohexanone peroxide reactions
Institution:1. Department of Fire Protection Engineering, China People''s Police University, Langfang, Hebei, 065000, PR China;2. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, PR China;3. Process Safety and Disaster Prevention Laboratory, Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, 123, University Rd., Sec. 3, Douliou, Yunlin, Taiwan, 64002, Taiwan;4. Division 2.1 ‘‘Explosion Protection Gases and Dusts’’, Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, D-12205, Berlin, Germany;1. LSPC—Laboratoire de Sécurité des Procédés Chimiques, EA4704, INSA Rouen, BP08, Avenue de l’Université, 76801 Saint-Etienne-du-Rouvray, France;2. Laboratory of Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500 Åbo/Turku, Finland
Abstract:The semi-batch reactors (SBRs) system, which is widely used in industrial processes, possesses an intrinsic parametric sensitivity, in which infinitesimal disturbances of input parameters can result in large variations in output variables. In this work, local parametric sensitivity analysis (PSA) was used to understand parameter variations and global PSA was conducted to examine the interaction of input parameters. The effects of these parameters on the output of the system model were analyzed based on the Monte Carlo method with Latin hypercube sampling and the extended Fourier amplitude sensitivity test model. The results showed that the evolution of thermal behaviors in SBRs were observed: marginal ignition; thermal runaway; and the quick onset, fair conversion, and smooth temperature profile. The threshold point of transition from marginal ignition to thermal runaway was at the maximal value of local sensitivity, for which the slope with respect to cooling temperature equaled zero. Moreover, the sequence of the global sensitivity of six common input parameters was computed and evaluated. The reliability of the numerical models was verified by using our previous experimental results of cyclohexanone peroxide reaction. This comprehensive sensitivity analysis could provide valuable operating information to improve chemical process safety.
Keywords:Semi-batch reactor  Parametric sensitivity analysis  Monte Carlo method  Thermal runaway  Cyclohexanone peroxide
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号