首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Risk analysis of a cross-regional toxic chemical disaster by using the integrated mesoscale and microscale consequence analysis model
Abstract:The rapidly growing capacity and scale of the world's petrochemical industries have forced many plants to have an even larger amount of hazardous substances. Once a serious leak occurs, the outcome of the effect zone could be very large or even uncontrollable just like the Bhopal disaster. In order to assess the risk of a cross-regional damage, this study aims to develop a model that can combine the benefits of both CFD model of the microscale simulation and the Gaussian dispersion model of the mesoscale simulation.The developed integrated model is employed on a toxic chemical tank leak accident of a process plant within an industrial park in order to explore the consequences and the risk of the toxic gas dispersion on three different scopes; one is the accident site, the second is the long-distance transmission route of the mesoscale area and the third is a target city. According to the simulation's results, it is obvious that the complexity of the structure surrounding the leaking tank will eventually affect the maximum ground concentration, the cloud shapes and cloud dilution rate, while the released gas is under dispersion. On the other hand, since the simple Gaussian dispersion model doesn't consider the above impacts, its calculation results will have many differences as compared to the realistic situation. This integrated model can be used as a tool for estimating the risk on a microscale or mesoscale areas and it can produce better results when an environmental impact analysis is required for a larger hazardous chemical process.
Keywords:ICAM  Gaussian dispersion model  CFD  FLACS  Risk analysis  Toxic gas release
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号