首页 | 本学科首页   官方微博 | 高级检索  
     检索      


End-of-life batteries management and material flow analysis in South Korea
Authors:Hyunhee Kim  Yong-Chul Jang  Yeonjung Hwang  Youngjae Ko  Hyunmyeong Yun
Institution:1. Department of Environmental Engineering, Chungnam National University, Daejeon 34134, South Korea2. Waste to Energy Research Division, Environmental Resources Research Department, National Institute of Environmental Research, Incheon 22689, South Korea3. Daejeon Green Environment Center, Daejeon 34134, South Korea
Abstract: Analysis of collection and recycling system of end-of-life batteries was examined. Relatively limited fractions of portable batteries were collected by EPR system. More effective and diverse collection pathways should be developed. Consumers increasingly have worn-out batteries as electrical and electronic equipment with new technical developments are introduced into the market and quickly replace older models. As a result, large amounts of end-of-life (EOL) or waste batteries are generated. Such batteries may contain a variety of materials that includes valuable resources as well as toxic elements. Thus, the proper recycling and management of batteries is very important from the perspective of resource conservation and environmental effect. The collection and recycling of EOL batteries is relatively low in South Korea compared to other countries, although an extended producer responsibility (EPR) policy was adopted for battery recycling in 2003. In this study, the management and material flow of EOL batteries is presented to determine potential problems and quantitative flow, based on literature review, site visits to battery recycling facilities, and interviews with experts in the Korea Battery Recycling Association (KBRA), manufacturers, and regulators in government. The results show that approximately 558 tons of manganese-alkaline batteries, the largest fraction among recycling target items, was disposed in landfills or incinerators in 2015, while approximately 2,000 tons of batteries were recovered at a recycling facility by simple sorting and crushing processes. By raising environmental awareness, more diverse and effective collection systems could be established for consumers to easily dispose of EOL batteries in many places. Producers, retailers and distributors in South Korea should also play an important role in the collection of EOL batteries from consumers. Lithium-ion batteries from many electronic devices must be included in the EPR system for resource recovery.
Keywords:End-of-life battery  Recycling  Material flow analysis (MFA)  Extended producer responsibility (EPR)  Resource recovery  
点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Environmental Science & Engineering》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号