摘 要: | 为了提升挥发性有机物(Volatile Organic Components, VOCs)的预测精度,在反向传播(Back-Propagation, BP)网络结构的基础上使用优化算法分别为遗传算法(Genetic Algorithms, GA)优化BP神经网络(GA-BP)和粒子群算法(Particle Swarm Optimization, PSO)优化BP神经网络(PSO-BP)对VOCs质量浓度进行预测。首先,对污染物及气象因子进行筛选。采用相关性分析法及逐步回归法进行分析筛选,并筛选出合适的输入变量。其次,建立BP神经网络结构。利用BP、GA-BP、PSO-BP神经网络,以石家庄市2022年夏季污染数据为样本对VOCs质量浓度进行预测。结果显示,经相关性分析及逐步回归法筛选,将PM2.5质量浓度、O3质量浓度、NO2质量浓度、温度、相对湿度作为输入变量。经预测结果对比,PSO-BP神经网络模型的预测精度较高,烷烃、烯烃、芳香烃和含氧烃实测值与预测值之间的拟合程度(R2)分别为0.80、0....
|