首页 | 本学科首页   官方微博 | 高级检索  
     

有机无机氮配施对不同程度盐渍土硝化和反硝化作用的影响
引用本文:周慧,史海滨,张文聪,王维刚,苏永德,闫妍. 有机无机氮配施对不同程度盐渍土硝化和反硝化作用的影响[J]. 环境科学, 2021, 42(10): 5010-5020
作者姓名:周慧  史海滨  张文聪  王维刚  苏永德  闫妍
作者单位:内蒙古农业大学水利与土木建筑工程学院,呼和浩特010018;内蒙古农业大学旱区农业节水与水土环境研究所,呼和浩特010018
基金项目:国家自然科学基金项目(51769024);国家自然科学基金重点项目(51539005);国家重点研发计划项目(2016YFC0400205)
摘    要:以内蒙古河套灌区轻度盐渍土S1(EC=0.62 dS·m-1)及中度盐渍土S2(EC=1.17 dS·m-1)为对象,研究硝化和反硝化进程对盐渍化程度和有机无机氮配施比例的响应及其影响因素.本试验设置了6个处理,包括不施氮(CK)、单施无机氮(U1)以及用有机氮(U3O1、U1O1、U1O3和O1)替代25%、50%、75%和100%的无机氮.结果表明,盐度升高会降低土壤硝化势而提高土壤反硝化能力,同一处理S1土壤硝化潜势较S2土壤高出28.81%~69.67%,而反硝化能力降低17.16%~88.91%.盐度升高会降低AOB丰度及硝化贡献率,但会增加AOA丰度和硝化贡献率;盐度增加会提高土壤nirKnirS型菌丰度,同时会增加N2O/(N2O+N2)产物比,但会抑制nosZ丰度.S1土壤,以U1O1处理硝化势和反硝化能力最大,较单施化肥增幅分别达到18.59%和15.87%;S2土壤,各施肥处理之间土壤硝化势差异不显著,反硝化能力以O1处理最大,较单施化肥提高88.26%.S1和S2盐渍土分别以U1O1及O1处理获得较高的AOB基因丰度及硝化贡献率,且增大了nirSnosZ基因丰度,并显著降低N2O/(N2O+N2)产物比.综上,相比单施无机氮,轻度盐渍土以有机无机氮各半配施,中度盐渍土以单施有机氮更加利于土壤硝化反硝化过程进行.

关 键 词:盐渍化农田  有机无机氮配施  硝化势  反硝化能力  功能微生物
收稿时间:2021-03-02
修稿时间:2021-03-25

Effects of Combination of Organic and Inorganic Nitrogen on Nitrification and Denitrification in Two Salinized Soils
ZHOU Hui,SHI Hai-bin,ZHANG Wen-cong,WANG Wei-gang,SU Yong-de,YAN Yan. Effects of Combination of Organic and Inorganic Nitrogen on Nitrification and Denitrification in Two Salinized Soils[J]. Chinese Journal of Environmental Science, 2021, 42(10): 5010-5020
Authors:ZHOU Hui  SHI Hai-bin  ZHANG Wen-cong  WANG Wei-gang  SU Yong-de  YAN Yan
Affiliation:College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China;Institute of Water-saving Agricultural and Soil-water Environment in Arid Area, Inner Mongolia Agricultural University, Hohhot 010018, China
Abstract:Focusing on typical mildly saline soil, S1 (EC, 0.62 dS·m-1), and moderately saline soil, S2 (EC, 1.17 dS·m-1), in Hetao Irrigation District of Inner Mongolia, the response of nitrification and denitrification process to salinization degree and the proportion of organic and inorganic nitrogen application were studied. The experimental treatments consisted of(1) no nitrogen(CK), (2) only inorganic nitrogen(U1), and(3) organic nitrogen(U3O1, U1O1, U1O3, and O1) compared to 25%, 50%, 75%, and 100% inorganic nitrogen. The results showed that increasing salinity reduced the soil nitrification potential and increased the soil denitrification capacity. The soil nitrification potential of the S1 soil was 28.81%-69.67% higher than that of the S2 soil, while the denitrification capacity was reduced by 17.16%-88.91%. With an increase in salinity, the AOB abundance and nitrification contribution rate were reduced, but the AOA abundance and nitrification contribution rate were increased. Furthermore, an increase in salinity increased the abundance of nirK and nirS bacteria, and increased N2O/(N2O+N2) production, but reduced the abundance of nosZ. In the S1 soil, the nitrification potential and denitrification capacity of U1O1 were highest, increasing by as much as 18.59% and 15.87%, respectively, compared to the U1 treatment. In the S2 soil, the difference in the soil nitrification potential between the various fertilization treatments was not significant, and the denitrification capacity of the O1 treatment was highest. The S1 and S2 saline soils treated with U1O1 and O1, respectively, had higher AOB gene abundance and nitrification contribution rates, increased nirS and nosZ gene abundances, and significantly reduced N2O/(N2O+N2) product ratios. Our findings suggested that mildly saline soils(120 kg·hm-2 urea+120 kg·hm-2 organic fertilizer) and moderately saline soils(240 kg·hm-2 organic fertilizer) are more conducive to soil nitrification and denitrification processes compared to soils to which inorganic nitrogen is applied alone.
Keywords:salinity soil  combined application of organic-inorganic nitrogen  nitrification potential  denitrification capacity  function microorganism
本文献已被 万方数据 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号