Abstract: | The current U.S. Environmental Protection Agency (U.S. EPA) protocols for mercury determinations in aqueous and solid waste samples (SW-846 Methods 7470 and 7471) using recirculating cold-vapor atomic absorption spectrometry (CV-AAS) have been evaluated. The U.S. EPA methods are not sufficiently flexible to permit special quality control (QC) measures, have limited detectability for low-level mercury concentrations, and are plagued by spectral interferences caused by the nonspecific absorption of primary mercury radiation by volatile organic vapors. The U.S. EPA protocols have been modified in a single-laboratory study to facilitate additional QC measures, to enhance detectability for low-level mercury concentrations, and to eliminate nonspecific vapor absorption interferences. Volumetric manipulations for additional QC measures, if required, are facilitated by performing the sample digestions in Erlenmeyer flasks rather than in the current Biochemical Oxygen Demand (BOD) reduction-aeration bottles. Typical manipulations for additional QC measures that are now feasible include dilution of concentrated samples and multiple aliquot sampling for post-digestion spike and replicate analyses. Instrument detectability is improved 10-fold by using a gas sparging bottle as a dedicated reduction-aeration vessel and a silver wool-amalgamation CV-AAS system operated in an open configuration. The on-line amalgamation/thermal desorption process of the modified CV-AAS system eliminates interfering water and organic matrix vapors prior to the mercury absorption measurement. Good accuracy and precision have been obtained with the amalgamation CV-AAS system for the analyses of four reference sediment materials. The amalgamation CV-AAS measurements on the reference sediment digests have been successfully performed at absolute mercury concentration levels that are only 1 to 4 times above the instrumental detection limit of the U.S. EPA recirculating CV-AAS method. |