首页 | 本学科首页   官方微博 | 高级检索  
     


U(VI) adsorption on aquifer sediments at the Hanford Site
Authors:Um Wooyong  Serne R Jeffrey  Brown Christopher F  Last George V
Affiliation:Pacific Northwest National Laboratory, PO Box 999, MS P7-22, Richland, WA 99354, USA. wooyong.um@pnl.gov
Abstract:Aquifer sediments collected via split-spoon sampling in two new groundwater wells in the 200-UP-1 operable unit at the Hanford Site were characterized and showed typical Ringold Unit E Formation properties dominated by gravel and sand. High iron-oxide content in Fe oxide/clay coatings caused the highest U(VI) adsorption as quantified by batch K(d) values, indicating iron oxides are the key solid adsorbent in the 200-UP-1 sediments that affect U(VI) fate and mobility. Even though U(VI) adsorption on the gravel-sized fraction of the sediments is considered to be negligible, careful characterization should be conducted to determine U(VI) adsorption on gravel, because of presence of Fe oxides coatings and diffusion-controlled adsorption into the gravel particles' interior surfaces. A linear adsorption isotherm was observed up to 10(-6) M (238 microg/L) of total U(VI) concentration in batch U(VI) adsorption tests with varying total U(VI) concentrations in spiked groundwater. U(VI) adsorption decreased with increasing concentrations of dissolved carbonate, because strong anionic aqueous uranium-carbonate complexes formed at high pH and high alkalinity conditions. Noticeable uranium desorption hysteresis was observed in a flow-through column experiment, suggesting that desorption K(d) values for aged uranium-contaminated sediments at the Hanford Site can be larger than adsorption K(d) values determined in short-term laboratory experiments and slow uranium release from contaminated sediments into the groundwater is expected.
Keywords:Uranium   Adsorption   Desorption   Hanford site   Distribution coefficient (Kd)
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号