首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Vibrational energy loss analysis in battery tab ultrasonic welding
Institution:1. School of Materials Science and Engineering, Tianjin University, Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300072, China;2. Key Lab of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin 300072, China
Abstract:In ultrasonic metal welding processes, high-frequency ultrasonic energy is used to generate friction and heat at the interface between weld parts to produce solid-state bonds. It has been observed that sufficient energy is required to produce proper bonding, while excessive energy can cause such quality issues as weld fracture and perforation. Therefore, it is important to have a product/process design in ultrasonic welding to ensure efficient energy conversion from ultrasonics to welding energy, minimizing energy loss in the process. In this work, vibrational energy loss associated with the longitudinal and flexural vibrations of the Cu coupon during ultrasonic welding is studied by applying one-dimensional continuous vibration models. To facilitate our modeling, experimental results from the free response of Cu coupon were obtained to determine the damping characteristics of the Cu coupon in the welding process. Our analysis shows that substantial energy loss can occur during welding due to the flexural vibration of the Cu coupon, especially when the overhang (the upper part of the Cu coupon extended from the anvil) of the Cu coupon resonates at or close to the welding frequency (about 20 kHz), degrading the weld quality of battery tabs. This study contributes to understanding the fundamental dynamics of the Cu coupon during ultrasonic welding and its impact on weld quality.
Keywords:Ultrasonic welding  Vibration  Energy loss  Battery
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号