首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A holistic approach to achieving energy efficiency for interoperable machining systems
Authors:Tao Peng
Institution:Department of Mechanical Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142, New Zealand
Abstract:In the twenty-first century, the continuous demand in energy resource has put sustainability on the agenda of many businesses. This is particularly true for the manufacturing industry, where a large amount of energy is consumed to sustain daily operations. This paper studies energy-efficient computer numerical control machining systems. To achieve overall energy efficiency in machining systems, several activities are involved as in the proposed research framework of a global energy-efficient machining system (GEMS). These activities are described as modules, i.e. energy monitoring, energy analysis and optimisation, energy-based optimal control and energy-enriched database. In a GEMS, one critical issue is data interoperability. Seamless data sharing enables collaboration for improving energy efficiency. Using the EXPRESS language, energy data models are proposed for each module in the GEMS, and integrated with the existing STEP-NC (STandard for Exchange of Produce-compliant Numerical Control) standards. Two case studies are presented to demonstrate how the proposed data models may be used. One study updates an existing production file to include general energy information for auditing or reviewing purposes; the other study maintains machine tool energy profiles in a database. Many other energy-efficient activities, e.g. online energy optimisation, can be realised with the proposed data models. The present study proved that interoperable energy information can enhance the energy-efficient performance of a machining system.
Keywords:CNC machining  STEP-NC  energy efficiency  interoperability  sustainable machining
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号