首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Response of zooxanthellae in symbiosis with the Mediterranean corals Cladocora caespitosa and Oculina patagonica to elevated temperatures
Authors:Riccardo Rodolfo-Metalpa  Cécile Richard  Denis Allemand  Carlo Nike Bianchi  Carla Morri  Christine Ferrier-Pagès
Institution:(1) Centre Scientifique de Monaco, Av. Saint Martin, 98000 Monaco, Principality of Monaco;(2) DipTeRis, Università di Genova, Corso Europa 26, 16132 Genova, Italy;(3) UMR 1112 INRA-UNSA, Faculté des Sciences, Université de Nice Sophia-Antipolis, BP 71, 06108 Nice Cedex 02, France
Abstract:Scleractinian symbiotic corals living in the Ligurian Sea (NW Mediterranean Sea) have experienced warm summers during the last decade, with temperatures rapidly increasing, within a few days, to 3–4°C above the mean value of 24°C. The effect of elevated temperatures on the photosynthetic efficiency of zooxanthellae in symbiosis with temperate corals has not been well investigated. In this study, the corals, Cladocora caespitosa and Oculina patagonica were collected in the Ligurian Sea (44°N, 9°E), maintained during 2 weeks at the mean summer temperature of 24°C and then exposed during 48 h to temperatures of 24 (control), 27, 29 and 32°C. Chlorophyll (chl) fluorescence parameters F v/F m, electron transport rate (ETR), non-photochemical quenching (NPQ)] were measured using pulse amplitude modulated (PAM) fluorimetry before, during the thermal increase, and after 1 and 7 days of recovery (corals maintained at 24°C). Zooxanthellae showed a broad tolerance to temperature increase, since their density remained unchanged and there was no significant reduction in their maximum quantum yield (F v/F m) or ETR up to 29°C. This temperature corresponded to a 5°C increase compared to the mean summer temperature (24°C) in the Ligurian Sea. At 32°C, there was a significant decrease in chl contents for both corals. This decrease was due to a reduction in the chl/zooxanthellae content. For C. caespitosa, there was also a decrease in ETRmax, not associated with a change in F v/F m or in the non-photochemical quenching (NPQ); for O. patagonica, both ETRmax and F v/F m significantly decreased, and NPQmax showed a significant increase. Damages to the photosystem II appeared to be reversible in both corals, since F v/F m values returned to normal after 1 day at 24°C. Zooxanthellae in symbiosis with the Mediterranean corals investigated can therefore be considered as resistant to short-term increases in temperature, even well above the maximum temperatures experienced by these corals in summer.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号