首页 | 本学科首页   官方微博 | 高级检索  
     

砷尾矿污染土壤的细菌群落结构多样性及其相关环境影响因子分析
引用本文:张堃,徐颖,周媛,黄华枝,廖俊杰,李林,朱永闯,廖斌,梁洁良,李金天. 砷尾矿污染土壤的细菌群落结构多样性及其相关环境影响因子分析[J]. 生态环境学报, 2021, 0(2): 391-399
作者姓名:张堃  徐颖  周媛  黄华枝  廖俊杰  李林  朱永闯  廖斌  梁洁良  李金天
作者单位:广东轻工职业技术学院生态环境技术学院;中山大学生命科学学院;华南师范大学生命科学学院生态科学研究所
基金项目:广东省自然科学基金项目(2018A0303130014);广东省教育厅特色创新项目(自然科学2018GKTSCX091);广东轻工职业技术学院自然科学项目(KJ2020-003);广东轻工职业技术学院校级专业领军人才项目(KYRC2020-004);广州市科协项目(K20200602018)。
摘    要:以湖南石门雄黄尾矿污染土壤为对象,研究纵向不同深度、横向不同距离土样中的重金属污染程度以及细菌群落结构变化规律,查明砷污染土壤的核心微生物组成并将其与土壤理化指标进行共存网络图分析.结果表明:该尾矿区的土壤各项重金属指标严重超标,尤以铅(626.54 mg·kg?1,Ei=105.48)、砷(1804.75 mg·kg...

关 键 词:砷尾矿  重金属污染土壤  综合潜在生态风险指数  微生物群落结构  微生物共享类群  共存网络图分析

Analysis of Microbial Community Structure and Environmental Impact Factorsof Arsenic Mine Tailings
ZHANG Kun,XU Ying,ZHOU Yuan,HUANG Huazhi,LIAO Junjie,LI Lin,ZHU Yongchuang,LIAO Bin,LIANG Jieliang,LI Jintian. Analysis of Microbial Community Structure and Environmental Impact Factorsof Arsenic Mine Tailings[J]. Ecology and Environment, 2021, 0(2): 391-399
Authors:ZHANG Kun  XU Ying  ZHOU Yuan  HUANG Huazhi  LIAO Junjie  LI Lin  ZHU Yongchuang  LIAO Bin  LIANG Jieliang  LI Jintian
Affiliation:(School of Eco-environment Technology,Guangdong Industry Polytechnic,Guangzhou 510300,China;School of Life Sciences,Sun Yat-Sen University,Guangzhou 510275,China;Institute of Ecological Science,School of Life Sciences,South China Normal University,Guangzhou 510631,China)
Abstract:In the study,we investigated the degrees of heavy metal pollution and patterns of microbial community composition at various depths and distances in a Hunan shimen realgar mine tailings,to identify the core microbes in arsenic contaminated soil and the soil physico-chemical properties influencing these microbes.The results showed that the heavy metal indexes in the mine tailings were remarkably higher than the standards,especially for lead(626.54 mg·kg?1,Ei=105.48),arsenic(1804.75 mg·kg?1,Ei=565.75),and cadmium(31.46 mg·kg?1,Ei=7491.5).There was a significant positive correlation between soil sampling depth and the comprehensive potential ecological risk index(RI)of heavy metals(r=0.79,P=0.000),while a significant negative correlation between RI and sampling distance was detected(r=?0.85,P=0.000).The dominant phyla in all samples were Proteobacteria(54.35%±17.16%)and Actinobacteria(22.39%±10.64%).As for genus level,the relative abundance of Pseudomonas(16.47%±11.84%),Acinetobacter(8.07%±7.11%),and Acidithiobacillus(7.53%±14.68%)were relatively high.The 26 taxa shared in all samples accounted for more than 90%of the total average relative abundance of the whole microbial communities,although the relative abundance of each specific genera varied largely among different samples.Specifically,Ferroplasma,Acidithiobacillus,Sulfobacillus,Lactobacillus,and Nitrospira were dominant in soil samples collected at different longitudinal depths.The coexistence network analysis(correlation coefficient r≥|0.6|,or P<0.05)revealed that some taxa were positively correlated with concentrations of ferrous,free arsenic,and cadmium,but were negatively correlated with pH.As for soil samples collected transversely,Acidiphilium,Pseudomonas,Corynebacterium,and Thiobacillus were the most abundant lineages.Some taxa were positively correlated with total arsenic and lead,while negatively correlated with combined or encrusted arsenic.In summary,we analyzed the environmental pollution risk of multiple heavy metals originated from the arsenic mine tailings and investigated the correlations between heavy metals and the core microbes,which might provide a theoretical basis for screening potential heavy metal resistant bacteria or engineered bacteria.
Keywords:arsenic mine tailings  heavy metal polluted soils  comprehensive potential ecological risk index  microbial community composition  shared microbiome  coexistence network analysis
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号