首页 | 本学科首页   官方微博 | 高级检索  
     


Dissipation,half-lives,and mass spectrometric identification of endosulfan isomers and the sulfate metabolite on three field-grown vegetables
Authors:George Antonious  Regina Hill  Kyla Ross  Timothy Coolong
Affiliation:1. Department of Plant and Soil Science , Kentucky State University , Frankfort , Kentucky , USA;2. Department of Horticulture , University of Kentucky , Lexington , Kentucky , USA
Abstract:
Endosulfan 3 EC, a mixture of α- and β-stereo isomers, was sprayed on field-grown pepper, melon, and sweet potato plants at the recommended rate of 0.44 kg A.I. acre?1. Plant tissue samples (leaves, fruits, or edible roots) were collected 1 h to 30 days following spraying and analyzed for endosulfan isomers (α- and β-isomers). Analysis of samples was accomplished using a gas chromatograph (GC) equipped with a mass detector in total ion mode. The results indicated the formation of endosulfan sulfate as the major metabolite of endosulfan sulfite and the relatively higher persistence of the β-isomers as compared to the α-isomer. The initial total residues (α- and β-isomers plus endosulfan sulfate) were higher on leaves than on fruits. On pepper and melon fruits, the α-isomer, which is the more toxic to mammals, dissipated faster (T1/2 = 1.22 and 0.95 d, respectively) than the less toxic β-isomer (T1/2 = 3.0 and 2.5 d, respectively). These results confirm the greater loss of the α-isomer compared to the β-isomer, which can ultimately impact endosulfan dissipation in the environment. Additionally, the higher initial residues of endosulfan on pepper and sweet potato leaves should be considered of great importance for timing field operations and the safe entry of harvesters due to the high mammalian toxicity of endosulfan.
Keywords:α-Endosulfan  β-endosulfan  endosulfan sulfate  pepper  melons  sweet potato
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号