首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrolysis and photolysis of oxytetracycline in aqueous solution
Authors:Richeng Xuan  Lestley Arisi  Qiquan Wang  Scott R Yates  Keka C Biswas
Institution:1. Chemistry Department , Delaware State University , Dover, Delaware;2. US Department of Agriculture-Agricultural Research Science , U.S. Salinity Laboratory , Riverside, California;3. Department of Science , Wesley College , Dover, Delaware
Abstract:Oxytetracycline ((2Z,4S,4aR,5S,5aR,6S,12aS)-2-(amino-hydroxy-methylidene)-4-dimethylamino-5,6,10,11,12a-pentahydroxy-6-methyl-4,4a,5,5a-tetrahydrotetracene-1,3,12-trione) is a member of tetracycline antibiotics family and is widely administered to farm animals for the purpose of therapeutical treatment and health protection. Increasing attention has been paid to the environmental fate of oxytetracycline and other veterinary antibiotics with the occurrence of these antibiotics in the environment. The hydrolysis and photolysis degradation of oxytetracycline was investigated in this study. Oxytetracycline hydrolysis was found to obey the first-order model and similar rate constant values ranging from 0.094 ± 0.001 to 0.106 ± 0.003 day? 1 were obtained at different initial concentration ranging from 10 to 230 μ M. Solution pH and temperature were shown to have remarked effects on oxytetracycline hydrolysis. The hydrolysis in pH neutral solution appeared to be much faster than in both acidic and alkaline solutions. Oxytetracycline half-life decreased from 1.2 × 102 to 0.15 day with the increasing temperature from 4 ± 0.8 to 60 ± 1°C. The presence of Ca2 + made oxytetracycline hydrolytic degradation kinetics deviate from the simple first-order model to the availability-adjusted first-order model and greatly slowed down the hydrolysis. Oxytetracycline photolysis was found to be very fast with a degradation rate constant at 3.61 ± 0.06 day? 1, which is comparable to that of hydrolysis at 60°C. The presence of Ca2 + accelerated oxytetracycline photolysis, implying that oxytetracycline become more vulnerable to sunlight irradiation after chelating with Ca2 +. The photolysis may be the dominant degradation pathway of oxytetracycline in shallow transparent water environment.
Keywords:Oxytetracycline  hydrolysis  photolysis  degradation  calcium cation  kinetics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号