首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Removal of Aldrin,Dieldrin, Heptachlor,and Heptachlor Epoxide Using Activated Carbon and/or Pseudomonas fluorescens Free Cell Cultures
Authors:ERICK R BANDALA  JUAN ANDRES-OCTAVIANO  PAULINO PASTRANA  LUIS G TORRES
Institution:1. Instituto Mexicano de Tecnología del Agua;2. Instituto Mexicano de Tecnología del Agua, Jiutepec, Morelos, México Instituto de Ingeniería, Universidad Nacional Autónoma de Mexico , Mexico D.F. Mexico
Abstract:

Degradation of aldrin (1,2,3,4,10,10-Hexachloro-1,4,4a,5,8,8a-hexahydro-1,4:5-8-dimethanonaphthalene), heptachlor (1H-1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro-4,7-methano indene), dieldrin (1aα,2β,2aα,3β,6β,6aα,7β,7aα)-3,4,5,6,9,9-Hexachloro-1a,2,2a,3,6,6a,7,7a-octahydro-2,7:3,6-d-methanonaphtha2,3-b]oxirene, and heptachlor epoxide (1aα, 1bβ,2α,5α,5αβ,6β,6aα-2,3,4,5,6,7,7-Heptachloro-1a,1b,5,5a,6,6a-hexahydro-2,5-methano-2H-inden1,2-b]-oxirene) was tested using free cultures of Pseudomonas fluorescens under controlled conditions. Pesticide concentrations were monitored by gas chromatography during 120 h. Percentages of degradation and biodegradation rates (BDR) were calculated. Data showed a trend suggesting a relation between chemical structure and degradability. Degradation kinetics for each pesticide tested showed that the highest degradation rates were found in the first 24 h. Kinetics data were adjusted to an empirical equation in order to predict their behavior, and the correlation coefficients obtained were satisfactory. Gas chromatography/mass spectrometry (GC/MS) analysis of the final extracts allowed the identification of chlordene and monodechlorodieldrin, which have been reported as final metabolite produced in the biodegradation of this kind of compounds. Regarding adsorption of pesticides on activated vegetal carbon, we concluded that removal efficiencies between 95.45 and 97.18% can be reached, depending on the pesticide and the carbon dose applied. The values for K from the Freundlich equation were quite similar for the four pesticides (between 1.0001 and 1.04), whereas the n values were quite different for each pesticide in the following order of affinity: dieldrin > aldrin > heptachlor epoxide > heptachlor. Equilibrium times, very important for scaling up the process, were between 43 min and 1 h, for the heptachlor epoxide and the heptachlor, respectively.
Keywords:Activated carbon  Adsorption  Aldrin  Biodegradation  Dieldrin  Heptachlor  Heptachlor epoxide  Pseudomonas fluorescens  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号