首页 | 本学科首页   官方微博 | 高级检索  
     


Populations in small, ephemeral habitat patches may drive dynamics in a Daphnia magna metapopulation
Authors:Altermatt Florian  Ebert Dieter
Affiliation:Zoological Institute, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland. faltermatt@bluewin.ch
Abstract:Migration is the key process to understand the dynamics and persistence of a metapopulation. Many metapopulation models assume a positive correlation between habitat patch size or stability and the number of emigrants. However, few empirical data exist, and habitat patch size and habitat stability may affect dispersal differently than they affect local persistence. Here, we studied the production of the migration stage (i.e., resting eggs called ephippia) of the cladoceran Daphnia magna in a metapopulation consisting of 530 rock pool habitat patches over 25 years. Earlier, the functioning of this metapopulation was explained with a Levins-type metapopulation model or with a mainland-island metapopulation model, based on local extinction and colonization data or time series data, respectively. We used pool volume, hydroperiod length, and number of desiccation events to calculate per-pool production of ephippia (i.e., migration stages). We estimated that populations in small and ephemeral habitat patches produced more than half of the 250 000 to 1 million ephippia that were produced in the metapopulation as a whole per year between 1982 and 2006. Furthermore, these small populations contributed approximately 90% of the ephippia exposed during desiccation events, while the contribution of the long-lived populations in large pools was minimal. We term this an "inverse mainland-island" type metapopulation and propose that populations in small, ephemeral habitat patches may also be the driving force for metapopulation dynamics in other systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号