首页 | 本学科首页   官方微博 | 高级检索  
     

利用LUR模型模拟杭州市PM2.5质量浓度空间分布
引用本文:汉瑞英,陈健,王彬. 利用LUR模型模拟杭州市PM2.5质量浓度空间分布[J]. 环境科学学报, 2016, 36(9): 3379-3385
作者姓名:汉瑞英  陈健  王彬
作者单位:浙江农林大学 浙江省森林生态系统碳循环与固碳减排重点实验室, 临安 311300,浙江农林大学 浙江省森林生态系统碳循环与固碳减排重点实验室, 临安 311300,浙江农林大学 浙江省森林生态系统碳循环与固碳减排重点实验室, 临安 311300
基金项目:国家自然科学基金(No.41101421,41471442);浙江省重点创新团队项目(No.2011R50027);浙江省研究院合作项目(No.2014SY16);金华市科学科技局农业科技计划项目(No.2014-2-010)
摘    要:模拟城市大气污染物浓度空间分布对研究城市空气质量及人体健康至关重要.本研究利用土地利用回归模型(Land Use Regression,LUR),提取包括污染点源因子、交通因子、人口因子、土地利用因子和气象因子等60个预测因子,基于地理加权算法(GWR)建立春、夏、秋、冬四个季节的模型,实现对杭州地区近地表PM_(2.5)质量浓度空间分布的预测.结果表明:基于地理加权回归算法时,检验模型的R2值分别达到0.76(春季)、0.70(夏季)、0.73(秋季)、0.76(冬季),模型能够解释PM_(2.5)浓度值80%以上的变异.每个季度杭州地区PM_(2.5)浓度变化不尽相同,但总体以杭州中部最高,西南部偏低.研究说明基于LUR模型模拟大尺度地区PM_(2.5)质量浓度空间分布是可行的.

关 键 词:PM2.5  LUR模型  GIS  GWR
收稿时间:2015-11-13
修稿时间:2016-01-15

Application of LUR models for simulating the spatial distribution of PM2.5 concentration in Hangzhou, China
HAN Ruiying,CHEN Jian and WANG Bin. Application of LUR models for simulating the spatial distribution of PM2.5 concentration in Hangzhou, China[J]. Acta Scientiae Circumstantiae, 2016, 36(9): 3379-3385
Authors:HAN Ruiying  CHEN Jian  WANG Bin
Affiliation:Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Zhejiang A & F University, lin''an 311300,Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Zhejiang A & F University, lin''an 311300 and Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Zhejiang A & F University, lin''an 311300
Abstract:Quantification of spatial variation of air pollutants in urban areas provides exposure assessment for epidemiological studies. In this paper, Land use regression (LUR) models were used to estimate the spatial distribution of particulate matter (PM2.5) in Hangzhou City. In total, more than 60 variables for the land use regression models were generated to characterize the road network, land use, meteorology and other factors. The geographical weighted regression algorithm (GWR) was used to build PM2.5 LUR models for the different seasons. The adjusted R2 values for the PM2.5 LUR models for spring, summer, autumn and winter were 0.76, 0.70, 0.73 and 0.76, respectively. The LUR models explained more than 80% of the spatial variability for PM2.5. The spatial pattern of PM2.5 changed with the seasons. The high concentrations of PM2.5 were more dispersed in the central areas of Hangzhou, and a clear area of low concentrations was evident in the southwest of the study regions. The approach of modeling the spatial distribution of PM2.5 using LUR models has potential usefulness for exposure assessment in health studies.
Keywords:PM2.5  land use regression models  GIS  GWR
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号