首页 | 本学科首页   官方微博 | 高级检索  
     

混合多目标遗传算法求解地下水污染修复管理模型
引用本文:宋健,杨蕴,吴剑锋,吴吉春. 混合多目标遗传算法求解地下水污染修复管理模型[J]. 环境科学学报, 2016, 36(9): 3428-3435
作者姓名:宋健  杨蕴  吴剑锋  吴吉春
作者单位:表生地球化学教育部重点实验室, 南京大学地球科学与工程学院水科学系, 南京 210023,河海大学地球科学与工程学院, 南京 211106,表生地球化学教育部重点实验室, 南京大学地球科学与工程学院水科学系, 南京 210023,表生地球化学教育部重点实验室, 南京大学地球科学与工程学院水科学系, 南京 210023
基金项目:国家自然科学基金资助项目(No.41072175,41372235,41402198)
摘    要:为了提高多目标遗传算法Pareto解的局部最优性,本文将快速非支配遗传算法(NSGAII)与一种迭代式的局部搜索算法(Hill Climber with Step,HCS)相结合,开发了一种新的混合多目标遗传算法NSGAII-HCS.利用CONV1和ZDT6两个经典的多目标优化函数对NSGAII-HCS的性能进行测试,与传统的多目标算法NSGAII相比,CONV1得到的Pareto锋面与真实Pareto最优解锋面的平均距离由5.49减小到1.74,ZDT6则由0.16减小到0,表明NSGAII-HCS在保证解多样性的前提下,能使解接近或收敛到真实的Pareto最优解锋面.最后,将NSGAII-HCS与地下水流模拟软件MODFLOW和溶质运移模拟软件MT3DMS相耦合,并应用到一个理想的二维地下水污染修复管理模型中,结果分析表明该方法可为地下水污染治理提供多样的和收敛的Pareto管理策略,是一种稳定可靠的多目标优化方法.

关 键 词:混合多目标算法  NSGAII  局部搜索  地下水污染修复
收稿时间:2015-10-19
修稿时间:2015-11-13

A new hybrid multi-objective genetic algorithm for optimal design of groundwater remediation systems
SONG Jian,YANG Yun,WU Jianfeng and WU Jichun. A new hybrid multi-objective genetic algorithm for optimal design of groundwater remediation systems[J]. Acta Scientiae Circumstantiae, 2016, 36(9): 3428-3435
Authors:SONG Jian  YANG Yun  WU Jianfeng  WU Jichun
Affiliation:Key Laboratory of Surficial Geochemistry, Ministry of Education;School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023,School of Earth Sciences and Engineering, Hohai University, Nanjing 211106,Key Laboratory of Surficial Geochemistry, Ministry of Education;School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023 and Key Laboratory of Surficial Geochemistry, Ministry of Education;School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023
Abstract:This study presents an algorithm that uses a novel iterative local search (Hill Climber with Step, HCS) in the nondominated sorting genetic algorithm II (NSGAII) as a hybrid multi-objective algorithm for improving convergence to the true Pareto front. We present some numerical results on two benchmark problems (CONV1, ZDT6). For the Pareto optimal fronts achieved by NSGAII-HCS with CONV1 and ZDT6, we compute the Euclidean distances of the Pareto fronts from the true Pareto optimal fronts. Comparing with NSGAII, NSGAII-HCS is able to decrease the average distance from 5.49 to 1.74 for CONV1 and from 0.16 to 0 for ZDT6, indicating that the proposed NSGAII-HCS is able to find much better spread of solutions and better convergence to the true Pareto optimal front. Finally, the proposed NSGAII-HCS is coupled with the commonly used flow and transport code, MODFLOW and MT3DMS, and applied to a synthetic pump-and-treat (PAT) groundwater remediation system. Comparing with the existing nondominated sorting genetic algorithm II (NSGAII), the proposed NSGAII-HCS can find Pareto optimal solutions with lower variability and higher reliability and is a promising tool for optimizing the multi-objective design of groundwater remediation systems.
Keywords:hybrid multi-objective algorithm  nondominated sorting genetic algorithm II (NSGAII)  local search  groundwater remediation
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号