摘 要: | 依据高压断路器振动信号特性,提出一种自适应白噪声完整经验模态分解( complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)与样本熵相结合的高压断路器故障特征提取方法。首先利用CEEMDAN将分闸振动信号分解成一系列内禀模态函数(intrinsic mode function,IMF),然后利用相关系数法与归一化能量筛选包含信号主要特征信息的前7阶IMF分量,求取其样本熵作为特征量,最后采用粒子群算法(particle swarm optimization,PSO)优化支持向量机(support vector machine,SVM)分类器,对断路器不同故障类型进行分类识别。实验结果表明该特征提取方法能准确提取振动信号特征量,输入PSO-SVM诊断高压断路器故障能取得良好的效果。
|