首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Prediction of adsorption rate of phosphate removal from wastewater with gas concrete
Abstract:Gas concrete, a conventional structural material, is used to remove phosphate from wastewater. A batch study of phosphate removal from wastewater with waste particles of gas concrete has been performed. The concentration-time graphs were plotted against pH, temperature, and agitation speed, and the reaction rate equation was adapted to adsorption. The differential method was used to define reaction rate. The adsorption rates, reaction rate constants, and reaction rates were determined by tangent lines of drawn curves at different concentrations, depending on pH, temperature, and agitation speed. The adsorption rate increased with pH and temperature. The maximum effect of agitation speed on the adsorption rate was observed at 150 rpm. The activation energy of reaction and the pre-exponential factor were calculated using the Arrhenius equilibrium equation. The zeta potentials of waste gas concrete were determined at various pH values. The surface area of gas concrete was obtained using BET apparatus as 22 m2/g. The composition of gas concrete was determined by X-ray diffractometry. The results indicate that gas concrete is an effective adsorbent to remove phosphate from wastewater.
Keywords:
点击此处可从《国际环境与污染杂志》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号