Spatial and temporal distributions of copepods to leeward and windward of Oahu, Hawaiian Archipelago |
| |
Authors: | R. P. Hassett G. W. Boehlert |
| |
Affiliation: | (1) Department of Biological Sciences, Ohio University, Athens, Ohio 45701, USA, US;(2) NMFS Southwest Fisheries Science Center, Pacific Fisheries Environmental Group, 1352 Lighthouse Ave., Pacific Grove, California 93950-2097, USA, US |
| |
Abstract: | The spatial and temporal distributions of two island-associated copepod species, Undinula vulgaris Dana and Labidocera madurae Scott, were compared to the distributions of two open ocean species, Cosmocalanus darwinii Lubbock and Scolecithrix danae Lubbock, along 28-km windward and leeward transects off the island of Oahu, Hawaii. Samples were taken in September and December 1985 and April and June 1986. A warm, low salinity pool on the leeward side was a prominent feature during all transects except December. The abundances of the two oceanic species did not change significantly between leeward and windward stations, with distance from shore, or between September 1985 and April 1986 samples. As expected, very high abundances of U. vulgaris occurred at some nearshore stations, up to 3 g dry wt m−2 for adults alone. Calculations of respiratory loss at these densities (0.7 g C m−2 d−1) suggest a high local productivity would be required to meet these demands. L. madurae, a surface-dwelling species normally restricted to within 1 km of shore, was an effective indicator species of nearshore water movement. It was more common in offshore samples on the leeward transects, rarely being found offshore on the windward side, consistent with prevailing currents and the presence of the leeward warm, low salinity pool. The occurrence of a strong mixing event in April 1986 resulted in L. madurae being distributed throughout the upper 100 m of the water column. The presence of oceanic species close to shore on the windward side also coincided with this wind-driven event. The primary environmental influence on vertical distributions was daytime cloud cover, with U. vulgaris tending to be found shallower on cloudy days. Of the two oceanic species, S. danae exhibited the most pronounced vertical migration, however, vertical distributions were not significantly correlated with environmental factors for either species. The abundant nearshore U. vulgaris population cannot be explained by differences in vertical distribution between it and the two oceanic species that might allow a physical mechanism to concentrate U. vulgaris. A high population growth rate is likely necessary to explain U. vulgaris' dominance. Received: 26 June 1998 / Accepted: 31 March 1999 |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|