首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of loading rate on shear strength parameters of mechanically and biologically treated waste
Authors:Guoyang Fan  Zhenying Zhang  Jiahe Zhang  Jiayue Zhang  Qiaona Wang  Min Wang  Bang Wang  Chengyu Nie
Institution:School of Civil Engineering and Architecture, Zhejiang Sci-tech University, Hangzhou 310018, China
Abstract: ● Mechanical behavior of MBT waste affected by loading rate was investigated. ● Shear strength ratio of MBT waste increases with an increase in loading rate. ● Cohesion is inversely related to loading rate. ● Internal friction angles are positively related to loading rate. ● MBT waste from China shows smaller range of φ. Mechanical biological treatment (MBT) technology has attracted increasing attention because it can reduce the volume of waste produced. To deal with the current trend of increasing waste, MBT practices are being adopted to address waste generated in developing urban societies. In this study, a total of 20 specimens of consolidated undrained triaxial tests were conducted on waste obtained from the Hangzhou Tianziling landfill, China, to evaluate the effect of loading rate on the shear strength parameters of MBT waste. The MBT waste samples exhibited an evident strain-hardening behavior, and no peak was observed even when the axial strain exceeded 25%. Further, the shear strength increased with an increase in the loading rate; the effect of loading rate on shear strength under a low confining pressure was greater than that under a high confining pressure. Furthermore, the shear strength parameters of MBT waste were related to the loading rate. The relationship between the cohesion, internal friction angle, and logarithm of the loading rate could be fitted to a linear relationship, which was established in this study. Finally, the ranges of shear strength parameters cohesion c and effective cohesion c ´ were determined as 1.0–8.2 kPa and 2.1–14.9 kPa, respectively; the ranges of the internal friction angle φ and effective internal friction angle φ ´ were determined as 16.2°–29° and 19.8°–43.9°, respectively. These results could be used as a valuable reference for conducting stability analyses of MBT landfills.
Keywords:Mechanically and biologically treated waste  Landfill  Triaxial test  Loading rate  Axial strain  Shear strength parameter  
点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Environmental Science & Engineering》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号