首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Profile analysis and modeling of reduced tillage effects on soil nitrous oxide flux
Authors:Venterea Rodney T  Stanenas Adam J
Institution:USDA-ARS, Soil and Water Research Management Unit, 1991 Upper Buford Cir., 439 Borlaug Hall, St. Paul, MN 55108, USA. rod.venterea@ars.usda.gov
Abstract:The impact of no-till (NT) and other reduced tillage (RT) practices on soil to atmosphere fluxes of nitrous oxide (N(2)O) are difficult to predict, and there is limited information regarding strategies for minimizing fluxes from RT systems. We measured vertical distributions of key microbial, chemical, and physical properties in soils from a long-term tillage experiment and used these data as inputs to a process-based model that accounts for N(2)O production, consumption, and gaseous diffusion. The results demonstrate how differences among tillage systems in the stratification of microbial enzyme activity, chemical reactivity, and other properties can control N(2)O fluxes. Under nitrification-dominated conditions, simulated N(2)O emissions in the presence of nitrite (NO(2)(-)) were 2 to 10 times higher in NT soil compared to soil under conventional tillage (CT). Under denitrification-dominated conditions in the presence of nitrate (NO(3)(-)), higher bulk density and water content under NT promoted higher denitrification rates than CT. These effects were partially offset by higher soluble organic carbon and/or temperature and lower N(2)O reduction rates under CT. The NT/CT ratio of N(2)O fluxes increased as NO(2)(-) or NO(3)(-) was placed closer to the surface. The highest NT/CT ratios of N(2)O flux (>30:1) were predicted for near-surface NO(3)(-) placement, while NT/CT ratios < 1 were predicted for NO(3)(-) placement below 15 cm. These results suggest that N(2)O fluxes from RT systems can be minimized by subsurface fertilizer placement and by using a chemical form of fertilizer that does not promote substantial NO(2)(-) accumulation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号