首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Antioxidant metabolism of coffee cell suspension cultures in response to cadmium
Authors:Gomes-Junior Rui A  Moldes Carlos A  Delite Fabricio S  Pompeu Georgia B  Gratão Priscila L  Mazzafera Paulo  Lea Peter J  Azevedo Ricardo A
Institution:Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de S?o Paulo, Piracicaba, SP, Brazil.
Abstract:The antioxidant responses of coffee (Coffea arabica L.) cell suspension cultures to cadmium (Cd) were investigated. Cd accumulated very rapidly in the cells and this accumulation was directly correlated with an increase in applied CdCl(2) concentration in the external medium. At 0.05mM CdCl(2), growth was stimulated, but at 0.5mM CdCl(2), the growth rate was reduced. An alteration in activated oxygen metabolism was detected by visual analysis as well as by an increase in lipid peroxidation at the higher CdCl(2) concentration. Catalase (CAT; EC 1.11.1.6), glutathione reductase (GR; EC 1.6.4.2) and superoxide dismutase (SOD; EC 1.15.1.1) activity increased, particularly at the higher concentration of CdCl(2). Ascorbate peroxidase (APX; EC 1.11.1.11) activity was increased at the lower CdCl(2) concentration used, but could not be detected in cells growing in the higher CdCl(2) concentration after 24h of growth, whilst guaiacol peroxidase (GOPX; EC 1.11.1.7) did not show a clear response to Cd treatment. An analysis by non-denaturing PAGE followed by staining for enzyme activity, revealed one CAT isoenzyme, nine SOD isoenzymes and four GR isoenzymes. The SOD isoenzymes were differently affected by CdCl(2) treatment and one GR isoenzyme was shown to specifically respond to CdCl(2). The results suggest that the higher concentrations of CdCl(2) may lead to oxidative stress. The main response appears to be via the induction of SOD and CAT activities for the removal of reactive oxygen species (ROS), and by the induction of GR to ensure the availability of reduced glutathione for the synthesis of Cd-binding peptides, which may also be related to the inhibition of APX activity probably due to glutathione and ascorbate depletion.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号