Field tracer-transport tests in unsaturated fractured tuff. |
| |
Authors: | Q Hu R Salve W T Stringfellow J S Wang |
| |
Affiliation: | Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley 94720, USA. q_hu@lbl.gov |
| |
Abstract: | ![]() This paper presents the results of a field investigation in the unsaturated, fractured welded tuff within the Exploratory Studies Facility (ESF) at Yucca Mountain, NV. This investigation included a series of tests during which tracer-laced water was released into a high-permeability zone within a horizontal injection borehole. The tracer concentration was monitored in the seepage collected in an excavated slot about 1.6 m below the borehole. Results showed significant variability in the hydrologic response of fractures and the matrix. Analyses of the breakthrough curves suggest that flow and transport pathways are dynamic, rather than fixed, and related to liquid-release rates. Under high release rates, fractures acted as the predominant flow pathways, with limited fracture-matrix interaction. Under low release rates, fracture flow was comparatively less dominant, with a noticeable contribution from matrix flow. Observations of tracer concentrations rebounding in seepage water, following an interruption of flow, provided evidence of mass exchange between the fast-flowing fractures and slow- or non-flowing regions. The tests also showed the applicability of fluorinated benzoate tracers in situations where multiple tracers of similar physical properties are warranted. |
| |
Keywords: | |
|
|