1.State Key Laboratory of Coal Resoures and Safe Mining, China University of Mining and Technology, Beijing, 100083, China ;2.College of Geoscience and Surveying Engineering, China University of Mining and Technology(Beijing), Beijing, 100083, China ;
Abstract:
Hg emission flux from various land covers, such as forests, wetlands, and urban areas, have been investigated. China has the largest area of coalfield in the world, but data of Hg flux of coalfields, especially, those with coal fires, are seriously limited. In this study, Hg fluxes of a coalfield were measured using the dynamic flux chamber (DFC) method, coupled with a Lumex multifunctional Hg analyzer RA-915+ (Lumex Ltd., Russia). The results show that the Hg flux in Wuda coalfield ranged from 4 to 318 ng m?2 h?1, and the average value for different areas varied, e.g., coal-fire area 99 and 177 ng m?2 h?1; no coal-fire area 19 and 32 ng m?2 h?1; and backfilling area 53 ng m?2 h?1. Hg continued to be emitted from an underground coal seam, even if there were no phenomena, such as vents, cracks, and smog, of coal fire on the soil surface. This phenomenon occurred in all area types, i.e., coal-fire area, no coal-fire area, and backfilling area, which is universal in Wuda coalfield. Considering that many coalfields in northern China are similar to Wuda coalfield, they may be large sources of atmospheric Hg. The correlations of Hg emission flux with influence factors, such as sunlight intensity, soil surface temperature, and atmospheric Hg content, were also investigated for Wuda coalfield.