首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparative accumulation of (109)Cd and (75)Se from water and food by an estuarine fish (Tetractenos glaber)
Authors:Alquezar Ralph  Markich Scott J  Twining John R
Institution:Department of Environmental Sciences, University of Technology Sydney, PO Box 123, Broadway 2007, NSW, Australia; Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai 2234, NSW, Australia.
Abstract:Few data are available on the comparative accumulation of metal(loid)s from water and food in estuarine/marine fish. Smooth toadfish (Tetractenos glaber), commonly found in estuaries in south-eastern Australia, were separately exposed to radio-labelled seawater (14kBqL(-1) of (109)Cd and 24kBqL(-1) of (75)Se) and food (ghost shrimps; Trypaea australiensis: 875Bqg(-1)(109)Cd and 1130Bqg(-1)(75)Se) for 25 days (uptake phase), followed by exposure to radionuclide-free water or food for 30 days (loss phase). Toadfish accumulated (109)Cd predominantly from water (85%) and (75)Se predominantly from food (62%), although the latter was lower than expected. For both the water and food exposures, (109)Cd was predominantly located in the gut lining (60-75%) at the end of the uptake phase, suggesting that the gut may be the primary pathway of (109)Cd uptake. This may be attributed to toadfish drinking large volumes of water to maintain osmoregulation. By the end of the loss phase, (109)Cd had predominantly shifted to the excretory organs - the liver (81%) in toadfish exposed to radio-labelled food, and in the liver, gills and kidney (82%) of toadfish exposed to radio-labelled water. In contrast, (75)Se was predominantly located in the excretory organs (gills, kidneys and liver; 66-76%) at the end of the uptake phase, irrespective of the exposure pathway, with minimal change in percentage distribution (76-83%) after the loss phase. This study emphasises the importance of differentiating accumulation pathways to better understand metal(loid) transfer dynamics and subsequent toxicity, in aquatic biota.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号