首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Manure phosphorus extractability as affected by aluminum- and iron by-products and aerobic composting
Authors:Dao T H  Sikora L J  Hamasaki A  Chaney R L
Institution:USDA-ARS, Animal Manure and By-Products Lab., BARC-East, Beltsville, MD 20705, USA. thdao@anri.barc.usda.gov
Abstract:Shifts in manure phosphorus (P) chemical forms and pool sizes induced by water treatment residuals and industrial mineral by-products are largely undefined. We conducted a manure P fractionation study to determine mechanisms of reduction of dissolved reactive phosphorus (DRP) in poultry manure upon mineral by-product additions. The effects of composting on the P immobilization efficacy of the by-products were determined using laboratory self-heating composting simulators. The mineral by-products included an aluminum-water treatment residual (Al-WTR) and an iron-rich titanium-processing by-product. The noncomposted manure averaged 0.11 g g(-1) of total P as DRP forms. The by-products significantly reduced manure DRP, by an average of 39 and 48% in the Al- and the Fe-treated manure, respectively. The by-products also reduced the 0.5 M NH4F-extractable phosphorus (FEP) fraction. Shifts in P forms between FEP and 0.1 M NaOH-extractable phosphorus (SHEP) depended upon the Al and Fe contents of the by-products while the combined FEP + SHEP pool remained constant. Phosphate sorption measurements supported the observations that the Fe-rich by-product was more effective at reducing manure DRP and enhancing the formation of SHEP forms at the expense of FEP than the Al-WTR. Composting had no effect on the efficacy of either by-product to reduce DRP. Potential mechanisms of enhanced P stabilization in treated manure upon composting included chemical shifts from the DRP and FEP fractions to the citrate-bicarbonate-dithionite extractable P fraction. Thus, the choice of P immobilization agents affected the stability of immobilized P forms and should be taken into consideration in developing manure processing and nutrient stabilization methods.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号