摘 要: | 为实现海上浮式生产系统(FPSO)火灾的预警,准确定位火源点,针对传统神经网络在火灾预警中存在收敛速度慢等问题,开发一种基于自适应神经网络的实时监测火灾预警方法。首先通过添加动量项和自适应学习率改进传统神经网络,并依据FPSO火灾事故数据训练学习网络;然后根据现场温度的实时监测数据,预测FPSO的火灾发生情况及位置;以FPSO平台的工艺处理模块I区为例,建立实时监测火灾预警自适应神经网络模型,利用FLACS软件设置火灾场景,将火灾发生后的温度监测数据输入到模型中。结果表明:输出的火源点位置与FLACS设置的火灾场景一致,验证了模型的有效性。
|