首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Natural and anthropogenic methane sources in New England
Institution:1. V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia;2. Polar Division of Public Joint Stock Company “Mining and Metallurgical Company “Norilsk Nickel”, Gvardeiskaya pl. 2, Norilsk, Krasnoyarsk Territory, 663330, Russia;1. Department of Earth Sciences, Uppsala University, Uppsala, Sweden;2. Department of Geology, Salahaddin University, Erbil, Kurdistan Region, Iraq
Abstract:We have recently completed a methane emissions inventory for the New England region. Methane emissions were calculated to be 0.91 Tg yr-1, with wetlands and landfills dominating all other sources. Wetlands are estimated to produce 0.33 Tg CH4 yr-1, of which 74% come from Maine. Active landfills emit an estimated 0.28 Tg CH4 yr-1, 60% of which are generated from twelve landfills. Although uncertainty in the estimate is greater, emissions from closed landfills are on the same order of magnitude as active landfills and wetlands; 0.25 Tg CH4 yr-1. Sources of moderate magnitude include ruminant animals (0.05 Tg CH4 yr-1) and residential wood combustion (0.03 Tg CH4 yr-1). Motor vehicles, natural gas, and wastewater treatment make only minor contributions. New England is heavily forested and the soil uptake of atmospheric methane in upland forests, 0.06 Tg CH4 yr-1, decreases emissions from soils by about 18%. Although uncertainties remain, our estimates indicate that even in a highly urbanized region such as New England, natural sources of methane make the single greatest contribution to total emissions, with state totals varying between 8% (Massachusetts) and 92% (Maine). Because emissions from only a few large landfills dominate anthropogenic sources, mitigation strategies focused on these discrete point sources should result in significant improvements in regional air quality. Current federal regulations mandate landfill gas collection at only the largest sites. Expanding recovery efforts to moderately sized landfills through either voluntary compliance or further regulations offers the best opportunity to substantially reduce atmospheric methane in New England. In the short term, however, the large contribution from closed, poorly regulated landfills may make the attribution of air quality improvements difficult. Mitigation efforts toward these landfills should also be a priority.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号